Appearance-based action recognition in the tensor framework

There are multiple contributory factors taking place in an action video, e.g., person, clothing, illumination, etc. When these factors change together, conventional 1-mode analysis like PCA in action space encounters difficulties. The N-mode analysis overcomes this problem. In this paper, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khadem, B.S., Rajan, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue
container_start_page 398
container_title
container_volume
creator Khadem, B.S.
Rajan, D.
description There are multiple contributory factors taking place in an action video, e.g., person, clothing, illumination, etc. When these factors change together, conventional 1-mode analysis like PCA in action space encounters difficulties. The N-mode analysis overcomes this problem. In this paper, we propose a novel framework for recognition of actions using silhouettes based on N-mode SVD. We use the silhouette ensembles to form a 3 rd order tensor comprising three modes: pixels, actions and people. Using N-mode SVD, we find the bases as well as the coefficients for the action space. For a query sequence, the resulting action-mode coefficients are compared with the learned coefficients to find the action class. Through experiments on a common database, we compare the proposed method with 1-mode PCA in appearance-base recognition of human actions and show that our method outperforms 1-mode analysis.
doi_str_mv 10.1109/CIRA.2009.5423173
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5423173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5423173</ieee_id><sourcerecordid>5423173</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6fc0e226c30397e400455bf694fb95ca5073d8846689d9efb8460dff2d2667cb3</originalsourceid><addsrcrecordid>eNpFT9tKw0AUXJGCtvYDxJf9gcSz9yw-heClUBCkfS67m7O6apOwCYh_b6sF52VmYJhhCLlmUDIG9rZZvdQlB7ClklwwI87InEkupazAivN_U6kZmR-DFpRk7IIsx_EdDpBKgLGX5K4eBnTZdQEL70ZsqQtT6juaMfSvXfrVqaPTG9IJu7HPNGa3x68-f1yRWXSfIy5PvCDbh_tN81Ssnx9XTb0uEjNqKnQMgJzrIEBYg_I4rnzUVkZvVXAKjGirSmpd2dZi9AcJbYy85Vqb4MWC3Pz1JkTcDTntXf7enZ6LH5eESdA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Appearance-based action recognition in the tensor framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khadem, B.S. ; Rajan, D.</creator><creatorcontrib>Khadem, B.S. ; Rajan, D.</creatorcontrib><description>There are multiple contributory factors taking place in an action video, e.g., person, clothing, illumination, etc. When these factors change together, conventional 1-mode analysis like PCA in action space encounters difficulties. The N-mode analysis overcomes this problem. In this paper, we propose a novel framework for recognition of actions using silhouettes based on N-mode SVD. We use the silhouette ensembles to form a 3 rd order tensor comprising three modes: pixels, actions and people. Using N-mode SVD, we find the bases as well as the coefficients for the action space. For a query sequence, the resulting action-mode coefficients are compared with the learned coefficients to find the action class. Through experiments on a common database, we compare the proposed method with 1-mode PCA in appearance-base recognition of human actions and show that our method outperforms 1-mode analysis.</description><identifier>ISBN: 1424448085</identifier><identifier>ISBN: 9781424448081</identifier><identifier>EISBN: 1424448093</identifier><identifier>EISBN: 9781424448098</identifier><identifier>DOI: 10.1109/CIRA.2009.5423173</identifier><identifier>LCCN: 2009905411</identifier><language>eng</language><publisher>IEEE</publisher><subject>Failure analysis ; Humans ; Image motion analysis ; Performance analysis ; Principal component analysis ; Robustness ; Shape ; Skeleton ; Tensile stress</subject><ispartof>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.398-403</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5423173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5423173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khadem, B.S.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><title>Appearance-based action recognition in the tensor framework</title><title>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</title><addtitle>CIRA</addtitle><description>There are multiple contributory factors taking place in an action video, e.g., person, clothing, illumination, etc. When these factors change together, conventional 1-mode analysis like PCA in action space encounters difficulties. The N-mode analysis overcomes this problem. In this paper, we propose a novel framework for recognition of actions using silhouettes based on N-mode SVD. We use the silhouette ensembles to form a 3 rd order tensor comprising three modes: pixels, actions and people. Using N-mode SVD, we find the bases as well as the coefficients for the action space. For a query sequence, the resulting action-mode coefficients are compared with the learned coefficients to find the action class. Through experiments on a common database, we compare the proposed method with 1-mode PCA in appearance-base recognition of human actions and show that our method outperforms 1-mode analysis.</description><subject>Failure analysis</subject><subject>Humans</subject><subject>Image motion analysis</subject><subject>Performance analysis</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Shape</subject><subject>Skeleton</subject><subject>Tensile stress</subject><isbn>1424448085</isbn><isbn>9781424448081</isbn><isbn>1424448093</isbn><isbn>9781424448098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT9tKw0AUXJGCtvYDxJf9gcSz9yw-heClUBCkfS67m7O6apOwCYh_b6sF52VmYJhhCLlmUDIG9rZZvdQlB7ClklwwI87InEkupazAivN_U6kZmR-DFpRk7IIsx_EdDpBKgLGX5K4eBnTZdQEL70ZsqQtT6juaMfSvXfrVqaPTG9IJu7HPNGa3x68-f1yRWXSfIy5PvCDbh_tN81Ssnx9XTb0uEjNqKnQMgJzrIEBYg_I4rnzUVkZvVXAKjGirSmpd2dZi9AcJbYy85Vqb4MWC3Pz1JkTcDTntXf7enZ6LH5eESdA</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Khadem, B.S.</creator><creator>Rajan, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Appearance-based action recognition in the tensor framework</title><author>Khadem, B.S. ; Rajan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6fc0e226c30397e400455bf694fb95ca5073d8846689d9efb8460dff2d2667cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Failure analysis</topic><topic>Humans</topic><topic>Image motion analysis</topic><topic>Performance analysis</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Shape</topic><topic>Skeleton</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Khadem, B.S.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khadem, B.S.</au><au>Rajan, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Appearance-based action recognition in the tensor framework</atitle><btitle>2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA)</btitle><stitle>CIRA</stitle><date>2009-12</date><risdate>2009</risdate><spage>398</spage><epage>403</epage><pages>398-403</pages><isbn>1424448085</isbn><isbn>9781424448081</isbn><eisbn>1424448093</eisbn><eisbn>9781424448098</eisbn><abstract>There are multiple contributory factors taking place in an action video, e.g., person, clothing, illumination, etc. When these factors change together, conventional 1-mode analysis like PCA in action space encounters difficulties. The N-mode analysis overcomes this problem. In this paper, we propose a novel framework for recognition of actions using silhouettes based on N-mode SVD. We use the silhouette ensembles to form a 3 rd order tensor comprising three modes: pixels, actions and people. Using N-mode SVD, we find the bases as well as the coefficients for the action space. For a query sequence, the resulting action-mode coefficients are compared with the learned coefficients to find the action class. Through experiments on a common database, we compare the proposed method with 1-mode PCA in appearance-base recognition of human actions and show that our method outperforms 1-mode analysis.</abstract><pub>IEEE</pub><doi>10.1109/CIRA.2009.5423173</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424448085
ispartof 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA), 2009, p.398-403
issn
language eng
recordid cdi_ieee_primary_5423173
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Failure analysis
Humans
Image motion analysis
Performance analysis
Principal component analysis
Robustness
Shape
Skeleton
Tensile stress
title Appearance-based action recognition in the tensor framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Appearance-based%20action%20recognition%20in%20the%20tensor%20framework&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Computational%20Intelligence%20in%20Robotics%20and%20Automation%20-%20(CIRA)&rft.au=Khadem,%20B.S.&rft.date=2009-12&rft.spage=398&rft.epage=403&rft.pages=398-403&rft.isbn=1424448085&rft.isbn_list=9781424448081&rft_id=info:doi/10.1109/CIRA.2009.5423173&rft_dat=%3Cieee_6IE%3E5423173%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424448093&rft.eisbn_list=9781424448098&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5423173&rfr_iscdi=true