Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles

Autonomous image processing of sonar images from stable underwater platforms such as autonomous underwater vehicles (AUVs) provides a means of rapidly detecting mine-like objects on the seabed, while avoiding the delays and human demands associated with manual processing. The Defence Science & T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chapple, Philip B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Chapple, Philip B.
description Autonomous image processing of sonar images from stable underwater platforms such as autonomous underwater vehicles (AUVs) provides a means of rapidly detecting mine-like objects on the seabed, while avoiding the delays and human demands associated with manual processing. The Defence Science & Technology Organisation has developed software using an unsupervised processing technique to detect mine-like objects in high-resolution sidescan sonar images. The software enables the user to process large volumes of data from AUV operations and report detection results. In the present study, the software detected 86% of mine-like objects in the imagery, with 0.13 false alarms per image (approximately one false alarm per eight minutes of survey). The results and analysis provide insight into the reasons for non-detections and false alarms, and strategies for improving the object detection performance. These techniques are suitable for application in post-processing of AUV data, for on-board processing applications and for the prediction of performance in the detection of objects on the seabed.
doi_str_mv 10.23919/OCEANS.2009.5422100
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5422100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5422100</ieee_id><sourcerecordid>5422100</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8924b9465c170d50f6cafe4b79080e82b6cf497b214d12de1ca1d3a6ede6d6a3</originalsourceid><addsrcrecordid>eNotkN1Kw0AUhFdUsNY-gV7sC6Se_ckm57KU-gPFXlTBu7LJnuhqky27ScW3N2CvBmY-hmEYuxMwlwoF3m-Wq8XLdi4BcJ5rKQXAGZthUQIqhXmhSnHOroWWWms08H7BJiCwyMYgv2KzlHwFQhgQqsQJs29dGg4Ujz6R4456qnsfOh4a3vqOsr3_Jh6qr9FO3Hc8ka1G0Lf2g-Ivb2JouR360IU2DIkPnaP4Y3uK_Eifvt5TumGXjd0nmp10yrYPq9flU7bePD4vF-vMI_RZiVJXqE1eiwJcDo2pbUO6KhBKoFJWpm40FpUU2gnpSNRWOGUNOTLOWDVlt_-tnoh2hzgOjL-70z_qD45hWoA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chapple, Philip B.</creator><creatorcontrib>Chapple, Philip B.</creatorcontrib><description>Autonomous image processing of sonar images from stable underwater platforms such as autonomous underwater vehicles (AUVs) provides a means of rapidly detecting mine-like objects on the seabed, while avoiding the delays and human demands associated with manual processing. The Defence Science &amp; Technology Organisation has developed software using an unsupervised processing technique to detect mine-like objects in high-resolution sidescan sonar images. The software enables the user to process large volumes of data from AUV operations and report detection results. In the present study, the software detected 86% of mine-like objects in the imagery, with 0.13 false alarms per image (approximately one false alarm per eight minutes of survey). The results and analysis provide insight into the reasons for non-detections and false alarms, and strategies for improving the object detection performance. These techniques are suitable for application in post-processing of AUV data, for on-board processing applications and for the prediction of performance in the detection of objects on the seabed.</description><identifier>ISSN: 0197-7385</identifier><identifier>ISBN: 142444960X</identifier><identifier>ISBN: 9781424449606</identifier><identifier>EISBN: 9780933957381</identifier><identifier>EISBN: 0933957386</identifier><identifier>DOI: 10.23919/OCEANS.2009.5422100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Delay ; Object detection ; Sonar detection ; sonar imaging ; sonar target recognition ; Synthetic aperture sonar ; Target recognition ; Training data ; underwater object detection ; Underwater tracking ; Underwater vehicles ; Vehicle detection</subject><ispartof>OCEANS 2009, 2009, p.1-6</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5422100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5422100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chapple, Philip B.</creatorcontrib><title>Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles</title><title>OCEANS 2009</title><addtitle>OCEANS</addtitle><description>Autonomous image processing of sonar images from stable underwater platforms such as autonomous underwater vehicles (AUVs) provides a means of rapidly detecting mine-like objects on the seabed, while avoiding the delays and human demands associated with manual processing. The Defence Science &amp; Technology Organisation has developed software using an unsupervised processing technique to detect mine-like objects in high-resolution sidescan sonar images. The software enables the user to process large volumes of data from AUV operations and report detection results. In the present study, the software detected 86% of mine-like objects in the imagery, with 0.13 false alarms per image (approximately one false alarm per eight minutes of survey). The results and analysis provide insight into the reasons for non-detections and false alarms, and strategies for improving the object detection performance. These techniques are suitable for application in post-processing of AUV data, for on-board processing applications and for the prediction of performance in the detection of objects on the seabed.</description><subject>Australia</subject><subject>Delay</subject><subject>Object detection</subject><subject>Sonar detection</subject><subject>sonar imaging</subject><subject>sonar target recognition</subject><subject>Synthetic aperture sonar</subject><subject>Target recognition</subject><subject>Training data</subject><subject>underwater object detection</subject><subject>Underwater tracking</subject><subject>Underwater vehicles</subject><subject>Vehicle detection</subject><issn>0197-7385</issn><isbn>142444960X</isbn><isbn>9781424449606</isbn><isbn>9780933957381</isbn><isbn>0933957386</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1Kw0AUhFdUsNY-gV7sC6Se_ckm57KU-gPFXlTBu7LJnuhqky27ScW3N2CvBmY-hmEYuxMwlwoF3m-Wq8XLdi4BcJ5rKQXAGZthUQIqhXmhSnHOroWWWms08H7BJiCwyMYgv2KzlHwFQhgQqsQJs29dGg4Ujz6R4456qnsfOh4a3vqOsr3_Jh6qr9FO3Hc8ka1G0Lf2g-Ivb2JouR360IU2DIkPnaP4Y3uK_Eifvt5TumGXjd0nmp10yrYPq9flU7bePD4vF-vMI_RZiVJXqE1eiwJcDo2pbUO6KhBKoFJWpm40FpUU2gnpSNRWOGUNOTLOWDVlt_-tnoh2hzgOjL-70z_qD45hWoA</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Chapple, Philip B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles</title><author>Chapple, Philip B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8924b9465c170d50f6cafe4b79080e82b6cf497b214d12de1ca1d3a6ede6d6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Delay</topic><topic>Object detection</topic><topic>Sonar detection</topic><topic>sonar imaging</topic><topic>sonar target recognition</topic><topic>Synthetic aperture sonar</topic><topic>Target recognition</topic><topic>Training data</topic><topic>underwater object detection</topic><topic>Underwater tracking</topic><topic>Underwater vehicles</topic><topic>Vehicle detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapple, Philip B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chapple, Philip B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles</atitle><btitle>OCEANS 2009</btitle><stitle>OCEANS</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0197-7385</issn><isbn>142444960X</isbn><isbn>9781424449606</isbn><eisbn>9780933957381</eisbn><eisbn>0933957386</eisbn><abstract>Autonomous image processing of sonar images from stable underwater platforms such as autonomous underwater vehicles (AUVs) provides a means of rapidly detecting mine-like objects on the seabed, while avoiding the delays and human demands associated with manual processing. The Defence Science &amp; Technology Organisation has developed software using an unsupervised processing technique to detect mine-like objects in high-resolution sidescan sonar images. The software enables the user to process large volumes of data from AUV operations and report detection results. In the present study, the software detected 86% of mine-like objects in the imagery, with 0.13 false alarms per image (approximately one false alarm per eight minutes of survey). The results and analysis provide insight into the reasons for non-detections and false alarms, and strategies for improving the object detection performance. These techniques are suitable for application in post-processing of AUV data, for on-board processing applications and for the prediction of performance in the detection of objects on the seabed.</abstract><pub>IEEE</pub><doi>10.23919/OCEANS.2009.5422100</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0197-7385
ispartof OCEANS 2009, 2009, p.1-6
issn 0197-7385
language eng
recordid cdi_ieee_primary_5422100
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Delay
Object detection
Sonar detection
sonar imaging
sonar target recognition
Synthetic aperture sonar
Target recognition
Training data
underwater object detection
Underwater tracking
Underwater vehicles
Vehicle detection
title Unsupervised detection of mine-like objects in seabed imagery from autonomous underwater vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20detection%20of%20mine-like%20objects%20in%20seabed%20imagery%20from%20autonomous%20underwater%20vehicles&rft.btitle=OCEANS%202009&rft.au=Chapple,%20Philip%20B.&rft.date=2009-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0197-7385&rft.isbn=142444960X&rft.isbn_list=9781424449606&rft_id=info:doi/10.23919/OCEANS.2009.5422100&rft_dat=%3Cieee_6IE%3E5422100%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780933957381&rft.eisbn_list=0933957386&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5422100&rfr_iscdi=true