A Dynamic Scheduling Algorithm for Complex Product with Batching Machines
At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex pr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | |
container_start_page | 440 |
container_title | |
container_volume | 2 |
creator | Zhiqiang Xie Yue Wang Qinglian Yu Jing Yang |
description | At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial. |
doi_str_mv | 10.1109/ICCMS.2010.87 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5421129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5421129</ieee_id><sourcerecordid>5421129</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7bfaa9f6f239628ac038b4effab75ae5554d4d5548cc7125fca6ca3d4b6578ce3</originalsourceid><addsrcrecordid>eNpVTDtPwzAYNEKVgJKRicV_IMXP2B6DeUVqBVK7V18cuzFKmipJBf33pIKFG-50ugdCd5QsKCXmobB2tV4wMnmtLlBilKaCCSEzwdXlP8_IDN0wQoyZhsxcoWQYPskEIRmR_BoVOX467aGNDq9d7atjE_c7nDe7ro9j3eLQ9dh27aHx3_ij76qjG_HXlOBHGF197q7grH64RbMAzeCTP52jzcvzxr6ly_fXwubLNBoypqoMACZkgXGTMQ2OcF0KHwKUSoKXUopKVBNr5xRlMjjIHPBKlJlU2nk-R_e_t9F7vz30sYX-tJWCUcoM_wG1Vk_c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</creator><creatorcontrib>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</creatorcontrib><description>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</description><identifier>ISBN: 9781424456420</identifier><identifier>ISBN: 1424456428</identifier><identifier>EISBN: 9781424456437</identifier><identifier>EISBN: 1424456436</identifier><identifier>DOI: 10.1109/ICCMS.2010.87</identifier><identifier>LCCN: 2009910929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; complex products ; Computational modeling ; Computer science ; Computer simulation ; critical-time ; Dynamic scheduling ; Educational institutions ; Heuristic algorithms ; Processor scheduling ; Production ; scheduling ; Scheduling algorithm ; structure of processing tree</subject><ispartof>2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.440-444</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5421129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5421129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhiqiang Xie</creatorcontrib><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Qinglian Yu</creatorcontrib><creatorcontrib>Jing Yang</creatorcontrib><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><title>2010 Second International Conference on Computer Modeling and Simulation</title><addtitle>ICCMS</addtitle><description>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</description><subject>Assembly</subject><subject>complex products</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>critical-time</subject><subject>Dynamic scheduling</subject><subject>Educational institutions</subject><subject>Heuristic algorithms</subject><subject>Processor scheduling</subject><subject>Production</subject><subject>scheduling</subject><subject>Scheduling algorithm</subject><subject>structure of processing tree</subject><isbn>9781424456420</isbn><isbn>1424456428</isbn><isbn>9781424456437</isbn><isbn>1424456436</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVTDtPwzAYNEKVgJKRicV_IMXP2B6DeUVqBVK7V18cuzFKmipJBf33pIKFG-50ugdCd5QsKCXmobB2tV4wMnmtLlBilKaCCSEzwdXlP8_IDN0wQoyZhsxcoWQYPskEIRmR_BoVOX467aGNDq9d7atjE_c7nDe7ro9j3eLQ9dh27aHx3_ij76qjG_HXlOBHGF197q7grH64RbMAzeCTP52jzcvzxr6ly_fXwubLNBoypqoMACZkgXGTMQ2OcF0KHwKUSoKXUopKVBNr5xRlMjjIHPBKlJlU2nk-R_e_t9F7vz30sYX-tJWCUcoM_wG1Vk_c</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zhiqiang Xie</creator><creator>Yue Wang</creator><creator>Qinglian Yu</creator><creator>Jing Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201001</creationdate><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><author>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7bfaa9f6f239628ac038b4effab75ae5554d4d5548cc7125fca6ca3d4b6578ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>complex products</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>critical-time</topic><topic>Dynamic scheduling</topic><topic>Educational institutions</topic><topic>Heuristic algorithms</topic><topic>Processor scheduling</topic><topic>Production</topic><topic>scheduling</topic><topic>Scheduling algorithm</topic><topic>structure of processing tree</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhiqiang Xie</creatorcontrib><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Qinglian Yu</creatorcontrib><creatorcontrib>Jing Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiqiang Xie</au><au>Yue Wang</au><au>Qinglian Yu</au><au>Jing Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</atitle><btitle>2010 Second International Conference on Computer Modeling and Simulation</btitle><stitle>ICCMS</stitle><date>2010-01</date><risdate>2010</risdate><volume>2</volume><spage>440</spage><epage>444</epage><pages>440-444</pages><isbn>9781424456420</isbn><isbn>1424456428</isbn><eisbn>9781424456437</eisbn><eisbn>1424456436</eisbn><abstract>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</abstract><pub>IEEE</pub><doi>10.1109/ICCMS.2010.87</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424456420 |
ispartof | 2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.440-444 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5421129 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly complex products Computational modeling Computer science Computer simulation critical-time Dynamic scheduling Educational institutions Heuristic algorithms Processor scheduling Production scheduling Scheduling algorithm structure of processing tree |
title | A Dynamic Scheduling Algorithm for Complex Product with Batching Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Dynamic%20Scheduling%20Algorithm%20for%20Complex%20Product%20with%20Batching%20Machines&rft.btitle=2010%20Second%20International%20Conference%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Zhiqiang%20Xie&rft.date=2010-01&rft.volume=2&rft.spage=440&rft.epage=444&rft.pages=440-444&rft.isbn=9781424456420&rft.isbn_list=1424456428&rft_id=info:doi/10.1109/ICCMS.2010.87&rft_dat=%3Cieee_6IE%3E5421129%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456437&rft.eisbn_list=1424456436&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5421129&rfr_iscdi=true |