A Dynamic Scheduling Algorithm for Complex Product with Batching Machines

At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhiqiang Xie, Yue Wang, Qinglian Yu, Jing Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue
container_start_page 440
container_title
container_volume 2
creator Zhiqiang Xie
Yue Wang
Qinglian Yu
Jing Yang
description At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.
doi_str_mv 10.1109/ICCMS.2010.87
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5421129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5421129</ieee_id><sourcerecordid>5421129</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7bfaa9f6f239628ac038b4effab75ae5554d4d5548cc7125fca6ca3d4b6578ce3</originalsourceid><addsrcrecordid>eNpVTDtPwzAYNEKVgJKRicV_IMXP2B6DeUVqBVK7V18cuzFKmipJBf33pIKFG-50ugdCd5QsKCXmobB2tV4wMnmtLlBilKaCCSEzwdXlP8_IDN0wQoyZhsxcoWQYPskEIRmR_BoVOX467aGNDq9d7atjE_c7nDe7ro9j3eLQ9dh27aHx3_ij76qjG_HXlOBHGF197q7grH64RbMAzeCTP52jzcvzxr6ly_fXwubLNBoypqoMACZkgXGTMQ2OcF0KHwKUSoKXUopKVBNr5xRlMjjIHPBKlJlU2nk-R_e_t9F7vz30sYX-tJWCUcoM_wG1Vk_c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</creator><creatorcontrib>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</creatorcontrib><description>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</description><identifier>ISBN: 9781424456420</identifier><identifier>ISBN: 1424456428</identifier><identifier>EISBN: 9781424456437</identifier><identifier>EISBN: 1424456436</identifier><identifier>DOI: 10.1109/ICCMS.2010.87</identifier><identifier>LCCN: 2009910929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; complex products ; Computational modeling ; Computer science ; Computer simulation ; critical-time ; Dynamic scheduling ; Educational institutions ; Heuristic algorithms ; Processor scheduling ; Production ; scheduling ; Scheduling algorithm ; structure of processing tree</subject><ispartof>2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.440-444</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5421129$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5421129$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhiqiang Xie</creatorcontrib><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Qinglian Yu</creatorcontrib><creatorcontrib>Jing Yang</creatorcontrib><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><title>2010 Second International Conference on Computer Modeling and Simulation</title><addtitle>ICCMS</addtitle><description>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</description><subject>Assembly</subject><subject>complex products</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>critical-time</subject><subject>Dynamic scheduling</subject><subject>Educational institutions</subject><subject>Heuristic algorithms</subject><subject>Processor scheduling</subject><subject>Production</subject><subject>scheduling</subject><subject>Scheduling algorithm</subject><subject>structure of processing tree</subject><isbn>9781424456420</isbn><isbn>1424456428</isbn><isbn>9781424456437</isbn><isbn>1424456436</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVTDtPwzAYNEKVgJKRicV_IMXP2B6DeUVqBVK7V18cuzFKmipJBf33pIKFG-50ugdCd5QsKCXmobB2tV4wMnmtLlBilKaCCSEzwdXlP8_IDN0wQoyZhsxcoWQYPskEIRmR_BoVOX467aGNDq9d7atjE_c7nDe7ro9j3eLQ9dh27aHx3_ij76qjG_HXlOBHGF197q7grH64RbMAzeCTP52jzcvzxr6ly_fXwubLNBoypqoMACZkgXGTMQ2OcF0KHwKUSoKXUopKVBNr5xRlMjjIHPBKlJlU2nk-R_e_t9F7vz30sYX-tJWCUcoM_wG1Vk_c</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zhiqiang Xie</creator><creator>Yue Wang</creator><creator>Qinglian Yu</creator><creator>Jing Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201001</creationdate><title>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</title><author>Zhiqiang Xie ; Yue Wang ; Qinglian Yu ; Jing Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7bfaa9f6f239628ac038b4effab75ae5554d4d5548cc7125fca6ca3d4b6578ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Assembly</topic><topic>complex products</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>critical-time</topic><topic>Dynamic scheduling</topic><topic>Educational institutions</topic><topic>Heuristic algorithms</topic><topic>Processor scheduling</topic><topic>Production</topic><topic>scheduling</topic><topic>Scheduling algorithm</topic><topic>structure of processing tree</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhiqiang Xie</creatorcontrib><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Qinglian Yu</creatorcontrib><creatorcontrib>Jing Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiqiang Xie</au><au>Yue Wang</au><au>Qinglian Yu</au><au>Jing Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Dynamic Scheduling Algorithm for Complex Product with Batching Machines</atitle><btitle>2010 Second International Conference on Computer Modeling and Simulation</btitle><stitle>ICCMS</stitle><date>2010-01</date><risdate>2010</risdate><volume>2</volume><spage>440</spage><epage>444</epage><pages>440-444</pages><isbn>9781424456420</isbn><isbn>1424456428</isbn><eisbn>9781424456437</eisbn><eisbn>1424456436</eisbn><abstract>At present, scheduling research with batching machines mainly solves scheduling problem without constraint among operations. There is no effective scheduling method for complex product with batching machines. To that end, a new algorithm is proposed to solve dynamic scheduling problem for complex product with batching machines. And the maximum lot-size of the batching machines is two. First, based on the feature of the structure of the processing tree which is provided with complex product, the algorithm adopts Priority strategy, Short-time strategy and Long-path strategy to schedule operations. Second, when the operations belong to batching machine, the algorithm adopts Long-path strategy, Critical-time waiting strategy and Short-time of precursor strategy to schedule operations. Theoretical analysis and examples show that the algorithm can solve dynamic scheduling problem for complex product with batching machines and the maximum lot-size of the batching machines is two. In addition, the complexity is not more than quadratic polynomial.</abstract><pub>IEEE</pub><doi>10.1109/ICCMS.2010.87</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424456420
ispartof 2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.440-444
issn
language eng
recordid cdi_ieee_primary_5421129
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Assembly
complex products
Computational modeling
Computer science
Computer simulation
critical-time
Dynamic scheduling
Educational institutions
Heuristic algorithms
Processor scheduling
Production
scheduling
Scheduling algorithm
structure of processing tree
title A Dynamic Scheduling Algorithm for Complex Product with Batching Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Dynamic%20Scheduling%20Algorithm%20for%20Complex%20Product%20with%20Batching%20Machines&rft.btitle=2010%20Second%20International%20Conference%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Zhiqiang%20Xie&rft.date=2010-01&rft.volume=2&rft.spage=440&rft.epage=444&rft.pages=440-444&rft.isbn=9781424456420&rft.isbn_list=1424456428&rft_id=info:doi/10.1109/ICCMS.2010.87&rft_dat=%3Cieee_6IE%3E5421129%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456437&rft.eisbn_list=1424456436&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5421129&rfr_iscdi=true