A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching
Object matching is an important issue for machine vision, object recognition and image analysis. A Hausdorff distance is one of commonly used measures for object matching because it is simple and insensitive to changes of image characteristics. But the conventional Hausdorff distances require high c...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 439 |
---|---|
container_issue | |
container_start_page | 435 |
container_title | |
container_volume | 2 |
creator | Jian-xin Kang Nai-ming Qi Jian Hou |
description | Object matching is an important issue for machine vision, object recognition and image analysis. A Hausdorff distance is one of commonly used measures for object matching because it is simple and insensitive to changes of image characteristics. But the conventional Hausdorff distances require high computational complexity and are not suited to the practical applications. In this work, we propose a new algorithm combining an improved partial Hausdorff distance, genetic algorithm and simulated annealing algorithm for higher computing efficiency and better matching results than the conventional Hausdorff measures. In this proposed method, the GA provides a global search and the SA algorithm provides local search. Analysis found the hybrid GA-SA conducts parallel analyses that increase the probability of finding an optimal solution while reducing computation time for object matching. Theoretical analysis and simulation results show that the new algorithm is very effective and robust under several kinds of noise conditions. |
doi_str_mv | 10.1109/ICCMS.2010.136 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5421128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5421128</ieee_id><sourcerecordid>5421128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3f980bfc50c9a8881154dcaee9028fe591c8eee5414a81b97e8365b16a5dd02e3</originalsourceid><addsrcrecordid>eNpVjD1PwzAYhI1QJaB0ZWHxD6DFn6k9RoF-SK0Y2r1y7NeJUeKgxB3670kFEuKW0-nuOYSeKFlQSvTrtij2hwUj18yzGzTTS0UFE0Jmgi9v_2VGJuiBEaL1SDJ9h2bD8ElGCcmI5Pco5XhzKfvg8B5S3TlcdG0ZYogV3pjz4Lree_wWhmSihRe8hggpWJw3VdeHVLfYRIcPoT03JoHDeYxgmiv9t_Bdj7etqQDvTbL1WD6iiTfNALNfn6Lj6v1YbOa7j_W2yHfzoEmac68VKb2VxGqjlKJUCmcNgCZMeZCaWgUAUlBhFC31EhTPZEkzI50jDPgUPf_chnF2-upDa_rLSQpGKVP8GzeFXrw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jian-xin Kang ; Nai-ming Qi ; Jian Hou</creator><creatorcontrib>Jian-xin Kang ; Nai-ming Qi ; Jian Hou</creatorcontrib><description>Object matching is an important issue for machine vision, object recognition and image analysis. A Hausdorff distance is one of commonly used measures for object matching because it is simple and insensitive to changes of image characteristics. But the conventional Hausdorff distances require high computational complexity and are not suited to the practical applications. In this work, we propose a new algorithm combining an improved partial Hausdorff distance, genetic algorithm and simulated annealing algorithm for higher computing efficiency and better matching results than the conventional Hausdorff measures. In this proposed method, the GA provides a global search and the SA algorithm provides local search. Analysis found the hybrid GA-SA conducts parallel analyses that increase the probability of finding an optimal solution while reducing computation time for object matching. Theoretical analysis and simulation results show that the new algorithm is very effective and robust under several kinds of noise conditions.</description><identifier>ISBN: 9781424456420</identifier><identifier>ISBN: 1424456428</identifier><identifier>EISBN: 9781424456437</identifier><identifier>EISBN: 1424456436</identifier><identifier>DOI: 10.1109/ICCMS.2010.136</identifier><identifier>LCCN: 2009910929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Computational complexity ; Computational modeling ; Concurrent computing ; genetic algorithm ; Genetic algorithms ; hausdorff distance ; Image analysis ; Image matching ; Machine vision ; Object recognition ; Simulated annealing ; simulated annealing algorithm</subject><ispartof>2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.435-439</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5421128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5421128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-xin Kang</creatorcontrib><creatorcontrib>Nai-ming Qi</creatorcontrib><creatorcontrib>Jian Hou</creatorcontrib><title>A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching</title><title>2010 Second International Conference on Computer Modeling and Simulation</title><addtitle>ICCMS</addtitle><description>Object matching is an important issue for machine vision, object recognition and image analysis. A Hausdorff distance is one of commonly used measures for object matching because it is simple and insensitive to changes of image characteristics. But the conventional Hausdorff distances require high computational complexity and are not suited to the practical applications. In this work, we propose a new algorithm combining an improved partial Hausdorff distance, genetic algorithm and simulated annealing algorithm for higher computing efficiency and better matching results than the conventional Hausdorff measures. In this proposed method, the GA provides a global search and the SA algorithm provides local search. Analysis found the hybrid GA-SA conducts parallel analyses that increase the probability of finding an optimal solution while reducing computation time for object matching. Theoretical analysis and simulation results show that the new algorithm is very effective and robust under several kinds of noise conditions.</description><subject>Algorithm design and analysis</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Concurrent computing</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>hausdorff distance</subject><subject>Image analysis</subject><subject>Image matching</subject><subject>Machine vision</subject><subject>Object recognition</subject><subject>Simulated annealing</subject><subject>simulated annealing algorithm</subject><isbn>9781424456420</isbn><isbn>1424456428</isbn><isbn>9781424456437</isbn><isbn>1424456436</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjD1PwzAYhI1QJaB0ZWHxD6DFn6k9RoF-SK0Y2r1y7NeJUeKgxB3670kFEuKW0-nuOYSeKFlQSvTrtij2hwUj18yzGzTTS0UFE0Jmgi9v_2VGJuiBEaL1SDJ9h2bD8ElGCcmI5Pco5XhzKfvg8B5S3TlcdG0ZYogV3pjz4Lree_wWhmSihRe8hggpWJw3VdeHVLfYRIcPoT03JoHDeYxgmiv9t_Bdj7etqQDvTbL1WD6iiTfNALNfn6Lj6v1YbOa7j_W2yHfzoEmac68VKb2VxGqjlKJUCmcNgCZMeZCaWgUAUlBhFC31EhTPZEkzI50jDPgUPf_chnF2-upDa_rLSQpGKVP8GzeFXrw</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Jian-xin Kang</creator><creator>Nai-ming Qi</creator><creator>Jian Hou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201001</creationdate><title>A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching</title><author>Jian-xin Kang ; Nai-ming Qi ; Jian Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3f980bfc50c9a8881154dcaee9028fe591c8eee5414a81b97e8365b16a5dd02e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Concurrent computing</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>hausdorff distance</topic><topic>Image analysis</topic><topic>Image matching</topic><topic>Machine vision</topic><topic>Object recognition</topic><topic>Simulated annealing</topic><topic>simulated annealing algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-xin Kang</creatorcontrib><creatorcontrib>Nai-ming Qi</creatorcontrib><creatorcontrib>Jian Hou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-xin Kang</au><au>Nai-ming Qi</au><au>Jian Hou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching</atitle><btitle>2010 Second International Conference on Computer Modeling and Simulation</btitle><stitle>ICCMS</stitle><date>2010-01</date><risdate>2010</risdate><volume>2</volume><spage>435</spage><epage>439</epage><pages>435-439</pages><isbn>9781424456420</isbn><isbn>1424456428</isbn><eisbn>9781424456437</eisbn><eisbn>1424456436</eisbn><abstract>Object matching is an important issue for machine vision, object recognition and image analysis. A Hausdorff distance is one of commonly used measures for object matching because it is simple and insensitive to changes of image characteristics. But the conventional Hausdorff distances require high computational complexity and are not suited to the practical applications. In this work, we propose a new algorithm combining an improved partial Hausdorff distance, genetic algorithm and simulated annealing algorithm for higher computing efficiency and better matching results than the conventional Hausdorff measures. In this proposed method, the GA provides a global search and the SA algorithm provides local search. Analysis found the hybrid GA-SA conducts parallel analyses that increase the probability of finding an optimal solution while reducing computation time for object matching. Theoretical analysis and simulation results show that the new algorithm is very effective and robust under several kinds of noise conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICCMS.2010.136</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424456420 |
ispartof | 2010 Second International Conference on Computer Modeling and Simulation, 2010, Vol.2, p.435-439 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5421128 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Computational complexity Computational modeling Concurrent computing genetic algorithm Genetic algorithms hausdorff distance Image analysis Image matching Machine vision Object recognition Simulated annealing simulated annealing algorithm |
title | A Hybrid Method Combining Hausdorff Distance, Genetic Algorithm and Simulated Annealing Algorithm for Image Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Hybrid%20Method%20Combining%20Hausdorff%20Distance,%20Genetic%20Algorithm%20and%20Simulated%20Annealing%20Algorithm%20for%20Image%20Matching&rft.btitle=2010%20Second%20International%20Conference%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Jian-xin%20Kang&rft.date=2010-01&rft.volume=2&rft.spage=435&rft.epage=439&rft.pages=435-439&rft.isbn=9781424456420&rft.isbn_list=1424456428&rft_id=info:doi/10.1109/ICCMS.2010.136&rft_dat=%3Cieee_6IE%3E5421128%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456437&rft.eisbn_list=1424456436&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5421128&rfr_iscdi=true |