Application of Kalman filter in track prediction of shuttlecock

This paper deals with the application of Kalman filter for optimizing and filtering the position signal of shuttlecock obtained by the vision servo system of 'shuttlecock robot'. Non-uniform mass distribution and air resistance effect can make much noise not only in vision recognition but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Man Yongkui, Zhao Liang, Hu Jingxin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2210
container_issue
container_start_page 2205
container_title
container_volume
creator Man Yongkui
Zhao Liang
Hu Jingxin
description This paper deals with the application of Kalman filter for optimizing and filtering the position signal of shuttlecock obtained by the vision servo system of 'shuttlecock robot'. Non-uniform mass distribution and air resistance effect can make much noise not only in vision recognition but also in kinematic model analysis of shuttlecock. The Kalman filter algorithm is used to filter the shuttlecock position signal by taking the error of measurement and the error of shuttlecock motion model into account. Besides, by considering the requirement of fast moving control, we reduce dimensions of state vector by decomposition of shuttlecock motion to shorten the executive cycle. The simulation results show its affectivity on improving the accuracy of track prediction. It can also accomplish track prediction fast and accurately when applied on `Shuttlecock Robot'.
doi_str_mv 10.1109/ROBIO.2009.5420475
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5420475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5420475</ieee_id><sourcerecordid>5420475</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a6c3b9bcd3dfe41da114337697021951d6b0e9f0444f9d07cf87b3dc45ac08bf3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhUekoNa8gG7mBVLvzdzJZFZSiz_FQkB0XSbzg2PTJCTjwre3Yl14NocDH4fDYewKYYEI-ualvlvXiwJALyQVQEqesEyrCqkgIqVkefovk56xix9cgyy0OGPZNH3AQSQFIp6z2-UwtNGaFPuO94E_m3ZvOh5im_zIY8fTaOyOD6N30f5B0_tnSq23vd1dslkw7eSzo8_Z28P96-op39SP69Vyk0dUMuWmtKLRjXXCBU_oDCIJoUqtoEAt0ZUNeB3gMDpoB8qGSjXCWZLGQtUEMWfXv73Re78dxrg349f2-IH4BudsTW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Kalman filter in track prediction of shuttlecock</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Man Yongkui ; Zhao Liang ; Hu Jingxin</creator><creatorcontrib>Man Yongkui ; Zhao Liang ; Hu Jingxin</creatorcontrib><description>This paper deals with the application of Kalman filter for optimizing and filtering the position signal of shuttlecock obtained by the vision servo system of 'shuttlecock robot'. Non-uniform mass distribution and air resistance effect can make much noise not only in vision recognition but also in kinematic model analysis of shuttlecock. The Kalman filter algorithm is used to filter the shuttlecock position signal by taking the error of measurement and the error of shuttlecock motion model into account. Besides, by considering the requirement of fast moving control, we reduce dimensions of state vector by decomposition of shuttlecock motion to shorten the executive cycle. The simulation results show its affectivity on improving the accuracy of track prediction. It can also accomplish track prediction fast and accurately when applied on `Shuttlecock Robot'.</description><identifier>ISBN: 9781424447749</identifier><identifier>ISBN: 1424447747</identifier><identifier>EISBN: 9781424447756</identifier><identifier>EISBN: 1424447755</identifier><identifier>DOI: 10.1109/ROBIO.2009.5420475</identifier><identifier>LCCN: 2009905293</identifier><language>eng</language><publisher>IEEE</publisher><subject>air resistance ; Electrical resistance measurement ; Filtering ; Filters ; Kalman filter ; Kinematics ; least squares ; Machine vision ; Motion control ; Motion measurement ; Position measurement ; Robot vision systems ; Servomechanisms ; Shuttlecock Robot</subject><ispartof>2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009, p.2205-2210</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5420475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5420475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Man Yongkui</creatorcontrib><creatorcontrib>Zhao Liang</creatorcontrib><creatorcontrib>Hu Jingxin</creatorcontrib><title>Application of Kalman filter in track prediction of shuttlecock</title><title>2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)</title><addtitle>ROBIO</addtitle><description>This paper deals with the application of Kalman filter for optimizing and filtering the position signal of shuttlecock obtained by the vision servo system of 'shuttlecock robot'. Non-uniform mass distribution and air resistance effect can make much noise not only in vision recognition but also in kinematic model analysis of shuttlecock. The Kalman filter algorithm is used to filter the shuttlecock position signal by taking the error of measurement and the error of shuttlecock motion model into account. Besides, by considering the requirement of fast moving control, we reduce dimensions of state vector by decomposition of shuttlecock motion to shorten the executive cycle. The simulation results show its affectivity on improving the accuracy of track prediction. It can also accomplish track prediction fast and accurately when applied on `Shuttlecock Robot'.</description><subject>air resistance</subject><subject>Electrical resistance measurement</subject><subject>Filtering</subject><subject>Filters</subject><subject>Kalman filter</subject><subject>Kinematics</subject><subject>least squares</subject><subject>Machine vision</subject><subject>Motion control</subject><subject>Motion measurement</subject><subject>Position measurement</subject><subject>Robot vision systems</subject><subject>Servomechanisms</subject><subject>Shuttlecock Robot</subject><isbn>9781424447749</isbn><isbn>1424447747</isbn><isbn>9781424447756</isbn><isbn>1424447755</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhUekoNa8gG7mBVLvzdzJZFZSiz_FQkB0XSbzg2PTJCTjwre3Yl14NocDH4fDYewKYYEI-ualvlvXiwJALyQVQEqesEyrCqkgIqVkefovk56xix9cgyy0OGPZNH3AQSQFIp6z2-UwtNGaFPuO94E_m3ZvOh5im_zIY8fTaOyOD6N30f5B0_tnSq23vd1dslkw7eSzo8_Z28P96-op39SP69Vyk0dUMuWmtKLRjXXCBU_oDCIJoUqtoEAt0ZUNeB3gMDpoB8qGSjXCWZLGQtUEMWfXv73Re78dxrg349f2-IH4BudsTW8</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Man Yongkui</creator><creator>Zhao Liang</creator><creator>Hu Jingxin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Application of Kalman filter in track prediction of shuttlecock</title><author>Man Yongkui ; Zhao Liang ; Hu Jingxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a6c3b9bcd3dfe41da114337697021951d6b0e9f0444f9d07cf87b3dc45ac08bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>air resistance</topic><topic>Electrical resistance measurement</topic><topic>Filtering</topic><topic>Filters</topic><topic>Kalman filter</topic><topic>Kinematics</topic><topic>least squares</topic><topic>Machine vision</topic><topic>Motion control</topic><topic>Motion measurement</topic><topic>Position measurement</topic><topic>Robot vision systems</topic><topic>Servomechanisms</topic><topic>Shuttlecock Robot</topic><toplevel>online_resources</toplevel><creatorcontrib>Man Yongkui</creatorcontrib><creatorcontrib>Zhao Liang</creatorcontrib><creatorcontrib>Hu Jingxin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Man Yongkui</au><au>Zhao Liang</au><au>Hu Jingxin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Kalman filter in track prediction of shuttlecock</atitle><btitle>2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)</btitle><stitle>ROBIO</stitle><date>2009-12</date><risdate>2009</risdate><spage>2205</spage><epage>2210</epage><pages>2205-2210</pages><isbn>9781424447749</isbn><isbn>1424447747</isbn><eisbn>9781424447756</eisbn><eisbn>1424447755</eisbn><abstract>This paper deals with the application of Kalman filter for optimizing and filtering the position signal of shuttlecock obtained by the vision servo system of 'shuttlecock robot'. Non-uniform mass distribution and air resistance effect can make much noise not only in vision recognition but also in kinematic model analysis of shuttlecock. The Kalman filter algorithm is used to filter the shuttlecock position signal by taking the error of measurement and the error of shuttlecock motion model into account. Besides, by considering the requirement of fast moving control, we reduce dimensions of state vector by decomposition of shuttlecock motion to shorten the executive cycle. The simulation results show its affectivity on improving the accuracy of track prediction. It can also accomplish track prediction fast and accurately when applied on `Shuttlecock Robot'.</abstract><pub>IEEE</pub><doi>10.1109/ROBIO.2009.5420475</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424447749
ispartof 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009, p.2205-2210
issn
language eng
recordid cdi_ieee_primary_5420475
source IEEE Electronic Library (IEL) Conference Proceedings
subjects air resistance
Electrical resistance measurement
Filtering
Filters
Kalman filter
Kinematics
least squares
Machine vision
Motion control
Motion measurement
Position measurement
Robot vision systems
Servomechanisms
Shuttlecock Robot
title Application of Kalman filter in track prediction of shuttlecock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Kalman%20filter%20in%20track%20prediction%20of%20shuttlecock&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Biomimetics%20(ROBIO)&rft.au=Man%20Yongkui&rft.date=2009-12&rft.spage=2205&rft.epage=2210&rft.pages=2205-2210&rft.isbn=9781424447749&rft.isbn_list=1424447747&rft_id=info:doi/10.1109/ROBIO.2009.5420475&rft_dat=%3Cieee_6IE%3E5420475%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424447756&rft.eisbn_list=1424447755&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5420475&rfr_iscdi=true