A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM

Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2010-05, Vol.59 (5), p.1485-1492
Hauptverfasser: Minfen Shen, Lanxin Lin, Jialiang Chen, Chang, C.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1492
container_issue 5
container_start_page 1485
container_title IEEE transactions on instrumentation and measurement
container_volume 59
creator Minfen Shen
Lanxin Lin
Jialiang Chen
Chang, C.Q.
description Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.
doi_str_mv 10.1109/TIM.2010.2040905
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5419981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5419981</ieee_id><sourcerecordid>2716626481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23</originalsourceid><addsrcrecordid>eNpdkEFLw0AQRhdRsFbvgpcFD55SZzfZ3eRYSq2FBoW2egzbzaRNSZO6mwj-eze0ePAyw8D7hplHyD2DEWOQPK_m6YiDnzhEkIC4IAMmhAoSKfklGQCwOEgiIa_JjXN7AFAyUgOyHNN3i3lp2rKp6fh4tI02O1o0lqZd1ZZmp-saKzqdzuiy3Na6cjRtcqzKekvXrq-LxuiKfupvrLCly4_0llwVnsO7cx-S9ct0NXkNFm-z-WS8CEwoRRtsOCt4pNEoEWLOIYyLQipUsdCsiJU0LIbE5GEcc6F1iBAhyjDkiMXGqJyHQ_J02uuP_urQtdmhdAarStfYdC5TkVAgvQxPPv4j901n-2cyBlwxyVXMPAUnytjGOYtFdrTlQdsfD2W95MxLznrJ2VmyjzycIiUi_uEiYkniF_4CeTJ2fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027162781</pqid></control><display><type>article</type><title>A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM</title><source>IEEE Electronic Library (IEL)</source><creator>Minfen Shen ; Lanxin Lin ; Jialiang Chen ; Chang, C.Q.</creator><creatorcontrib>Minfen Shen ; Lanxin Lin ; Jialiang Chen ; Chang, C.Q.</creatorcontrib><description>Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2010.2040905</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Brain modeling ; Electroencephalogram (EEG) signal ; Electroencephalography ; local prediction method ; Optimization methods ; Prediction methods ; Predictive models ; Signal processing ; Signal processing algorithms ; Spatiotemporal phenomena ; support vector machine (SVM) ; Support vector machines ; wavelet kernel</subject><ispartof>IEEE transactions on instrumentation and measurement, 2010-05, Vol.59 (5), p.1485-1492</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23</citedby><cites>FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5419981$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5419981$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minfen Shen</creatorcontrib><creatorcontrib>Lanxin Lin</creatorcontrib><creatorcontrib>Jialiang Chen</creatorcontrib><creatorcontrib>Chang, C.Q.</creatorcontrib><title>A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.</description><subject>Approximation algorithms</subject><subject>Brain modeling</subject><subject>Electroencephalogram (EEG) signal</subject><subject>Electroencephalography</subject><subject>local prediction method</subject><subject>Optimization methods</subject><subject>Prediction methods</subject><subject>Predictive models</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spatiotemporal phenomena</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>wavelet kernel</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AQRhdRsFbvgpcFD55SZzfZ3eRYSq2FBoW2egzbzaRNSZO6mwj-eze0ePAyw8D7hplHyD2DEWOQPK_m6YiDnzhEkIC4IAMmhAoSKfklGQCwOEgiIa_JjXN7AFAyUgOyHNN3i3lp2rKp6fh4tI02O1o0lqZd1ZZmp-saKzqdzuiy3Na6cjRtcqzKekvXrq-LxuiKfupvrLCly4_0llwVnsO7cx-S9ct0NXkNFm-z-WS8CEwoRRtsOCt4pNEoEWLOIYyLQipUsdCsiJU0LIbE5GEcc6F1iBAhyjDkiMXGqJyHQ_J02uuP_urQtdmhdAarStfYdC5TkVAgvQxPPv4j901n-2cyBlwxyVXMPAUnytjGOYtFdrTlQdsfD2W95MxLznrJ2VmyjzycIiUi_uEiYkniF_4CeTJ2fA</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Minfen Shen</creator><creator>Lanxin Lin</creator><creator>Jialiang Chen</creator><creator>Chang, C.Q.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7TK</scope></search><sort><creationdate>201005</creationdate><title>A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM</title><author>Minfen Shen ; Lanxin Lin ; Jialiang Chen ; Chang, C.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation algorithms</topic><topic>Brain modeling</topic><topic>Electroencephalogram (EEG) signal</topic><topic>Electroencephalography</topic><topic>local prediction method</topic><topic>Optimization methods</topic><topic>Prediction methods</topic><topic>Predictive models</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spatiotemporal phenomena</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>wavelet kernel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minfen Shen</creatorcontrib><creatorcontrib>Lanxin Lin</creatorcontrib><creatorcontrib>Jialiang Chen</creatorcontrib><creatorcontrib>Chang, C.Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minfen Shen</au><au>Lanxin Lin</au><au>Jialiang Chen</au><au>Chang, C.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2010-05</date><risdate>2010</risdate><volume>59</volume><issue>5</issue><spage>1485</spage><epage>1492</epage><pages>1485-1492</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2010.2040905</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2010-05, Vol.59 (5), p.1485-1492
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_5419981
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Brain modeling
Electroencephalogram (EEG) signal
Electroencephalography
local prediction method
Optimization methods
Prediction methods
Predictive models
Signal processing
Signal processing algorithms
Spatiotemporal phenomena
support vector machine (SVM)
Support vector machines
wavelet kernel
title A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prediction%20Approach%20for%20Multichannel%20EEG%20Signals%20Modeling%20Using%20Local%20Wavelet%20SVM&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Minfen%20Shen&rft.date=2010-05&rft.volume=59&rft.issue=5&rft.spage=1485&rft.epage=1492&rft.pages=1485-1492&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2010.2040905&rft_dat=%3Cproquest_RIE%3E2716626481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027162781&rft_id=info:pmid/&rft_ieee_id=5419981&rfr_iscdi=true