Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery

A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mianji, F.A., Ye Zhang, Yanfeng Gu, Babakhani, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page III-1014
container_issue
container_start_page III-1011
container_title
container_volume 3
creator Mianji, F.A.
Ye Zhang
Yanfeng Gu
Babakhani, A.
description A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.
doi_str_mv 10.1109/IGARSS.2009.5417949
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5417949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5417949</ieee_id><sourcerecordid>5417949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-95a67f6e7b529b34a1b8f99824aeb4f942440a9fc55f63cb9a856d51c6f915073</originalsourceid><addsrcrecordid>eNpFUMtuwkAM3D6QCpQv4JIfCPVmH4mPCLUUCalVwx05wVtShSTahAN_3yCi1hfLM5qxZoSYS1hICfiyWS-_0nQRAeDCaBmjxjsxkTrSWik0eC_GkTQqjAHUwz-h4XEgLKIdiUlvkKCEHnoSs7b9gX60AavjsfhMG-oKKsO24bzzVAYH6ihw57aoq8DVPvDc1uW5u55cHanK-cRVF9QuOF4a9n-64kTf7C_PYuSobHk27KnYvb3uVu_h9mO9WS23YYHQhWjIxs5ynJkIM6VJZolDTCJNnGmH1yhA6HJjnFV5hpQYezAytw6lgVhNxfxmWzDzvvH9d3_ZDy2pX862Vps</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</creator><creatorcontrib>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</creatorcontrib><description>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424433940</identifier><identifier>ISBN: 9781424433940</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424433959</identifier><identifier>EISBN: 9781424433957</identifier><identifier>DOI: 10.1109/IGARSS.2009.5417949</identifier><identifier>LCCN: 2008910215</identifier><language>eng</language><publisher>IEEE</publisher><subject>1f noise ; Computational efficiency ; data fusion ; hyperspectral imagery ; Hyperspectral imaging ; Image resolution ; Least squares methods ; Libraries ; Pixel ; resolution enhancement ; Spatial resolution ; Spectral analysis ; spectral unmixing ; super-resolution mapping ; Training data</subject><ispartof>2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-1011-III-1014</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5417949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5417949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Yanfeng Gu</creatorcontrib><creatorcontrib>Babakhani, A.</creatorcontrib><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><title>2009 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</description><subject>1f noise</subject><subject>Computational efficiency</subject><subject>data fusion</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image resolution</subject><subject>Least squares methods</subject><subject>Libraries</subject><subject>Pixel</subject><subject>resolution enhancement</subject><subject>Spatial resolution</subject><subject>Spectral analysis</subject><subject>spectral unmixing</subject><subject>super-resolution mapping</subject><subject>Training data</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424433940</isbn><isbn>9781424433940</isbn><isbn>1424433959</isbn><isbn>9781424433957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtuwkAM3D6QCpQv4JIfCPVmH4mPCLUUCalVwx05wVtShSTahAN_3yCi1hfLM5qxZoSYS1hICfiyWS-_0nQRAeDCaBmjxjsxkTrSWik0eC_GkTQqjAHUwz-h4XEgLKIdiUlvkKCEHnoSs7b9gX60AavjsfhMG-oKKsO24bzzVAYH6ihw57aoq8DVPvDc1uW5u55cHanK-cRVF9QuOF4a9n-64kTf7C_PYuSobHk27KnYvb3uVu_h9mO9WS23YYHQhWjIxs5ynJkIM6VJZolDTCJNnGmH1yhA6HJjnFV5hpQYezAytw6lgVhNxfxmWzDzvvH9d3_ZDy2pX862Vps</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Mianji, F.A.</creator><creator>Ye Zhang</creator><creator>Yanfeng Gu</creator><creator>Babakhani, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><author>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-95a67f6e7b529b34a1b8f99824aeb4f942440a9fc55f63cb9a856d51c6f915073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1f noise</topic><topic>Computational efficiency</topic><topic>data fusion</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image resolution</topic><topic>Least squares methods</topic><topic>Libraries</topic><topic>Pixel</topic><topic>resolution enhancement</topic><topic>Spatial resolution</topic><topic>Spectral analysis</topic><topic>spectral unmixing</topic><topic>super-resolution mapping</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Yanfeng Gu</creatorcontrib><creatorcontrib>Babakhani, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mianji, F.A.</au><au>Ye Zhang</au><au>Yanfeng Gu</au><au>Babakhani, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</atitle><btitle>2009 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><spage>III-1011</spage><epage>III-1014</epage><pages>III-1011-III-1014</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424433940</isbn><isbn>9781424433940</isbn><eisbn>1424433959</eisbn><eisbn>9781424433957</eisbn><abstract>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2009.5417949</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-1011-III-1014
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_5417949
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 1f noise
Computational efficiency
data fusion
hyperspectral imagery
Hyperspectral imaging
Image resolution
Least squares methods
Libraries
Pixel
resolution enhancement
Spatial resolution
Spectral analysis
spectral unmixing
super-resolution mapping
Training data
title Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial-spectral%20data%20fusion%20for%20resolution%20enhancement%20of%20hyperspectral%20imagery&rft.btitle=2009%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Mianji,%20F.A.&rft.date=2009-07&rft.volume=3&rft.spage=III-1011&rft.epage=III-1014&rft.pages=III-1011-III-1014&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424433940&rft.isbn_list=9781424433940&rft_id=info:doi/10.1109/IGARSS.2009.5417949&rft_dat=%3Cieee_6IE%3E5417949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424433959&rft.eisbn_list=9781424433957&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5417949&rfr_iscdi=true