Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery
A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | III-1014 |
---|---|
container_issue | |
container_start_page | III-1011 |
container_title | |
container_volume | 3 |
creator | Mianji, F.A. Ye Zhang Yanfeng Gu Babakhani, A. |
description | A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast. |
doi_str_mv | 10.1109/IGARSS.2009.5417949 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5417949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5417949</ieee_id><sourcerecordid>5417949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-95a67f6e7b529b34a1b8f99824aeb4f942440a9fc55f63cb9a856d51c6f915073</originalsourceid><addsrcrecordid>eNpFUMtuwkAM3D6QCpQv4JIfCPVmH4mPCLUUCalVwx05wVtShSTahAN_3yCi1hfLM5qxZoSYS1hICfiyWS-_0nQRAeDCaBmjxjsxkTrSWik0eC_GkTQqjAHUwz-h4XEgLKIdiUlvkKCEHnoSs7b9gX60AavjsfhMG-oKKsO24bzzVAYH6ihw57aoq8DVPvDc1uW5u55cHanK-cRVF9QuOF4a9n-64kTf7C_PYuSobHk27KnYvb3uVu_h9mO9WS23YYHQhWjIxs5ynJkIM6VJZolDTCJNnGmH1yhA6HJjnFV5hpQYezAytw6lgVhNxfxmWzDzvvH9d3_ZDy2pX862Vps</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</creator><creatorcontrib>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</creatorcontrib><description>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424433940</identifier><identifier>ISBN: 9781424433940</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424433959</identifier><identifier>EISBN: 9781424433957</identifier><identifier>DOI: 10.1109/IGARSS.2009.5417949</identifier><identifier>LCCN: 2008910215</identifier><language>eng</language><publisher>IEEE</publisher><subject>1f noise ; Computational efficiency ; data fusion ; hyperspectral imagery ; Hyperspectral imaging ; Image resolution ; Least squares methods ; Libraries ; Pixel ; resolution enhancement ; Spatial resolution ; Spectral analysis ; spectral unmixing ; super-resolution mapping ; Training data</subject><ispartof>2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-1011-III-1014</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5417949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5417949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Yanfeng Gu</creatorcontrib><creatorcontrib>Babakhani, A.</creatorcontrib><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><title>2009 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</description><subject>1f noise</subject><subject>Computational efficiency</subject><subject>data fusion</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image resolution</subject><subject>Least squares methods</subject><subject>Libraries</subject><subject>Pixel</subject><subject>resolution enhancement</subject><subject>Spatial resolution</subject><subject>Spectral analysis</subject><subject>spectral unmixing</subject><subject>super-resolution mapping</subject><subject>Training data</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424433940</isbn><isbn>9781424433940</isbn><isbn>1424433959</isbn><isbn>9781424433957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtuwkAM3D6QCpQv4JIfCPVmH4mPCLUUCalVwx05wVtShSTahAN_3yCi1hfLM5qxZoSYS1hICfiyWS-_0nQRAeDCaBmjxjsxkTrSWik0eC_GkTQqjAHUwz-h4XEgLKIdiUlvkKCEHnoSs7b9gX60AavjsfhMG-oKKsO24bzzVAYH6ihw57aoq8DVPvDc1uW5u55cHanK-cRVF9QuOF4a9n-64kTf7C_PYuSobHk27KnYvb3uVu_h9mO9WS23YYHQhWjIxs5ynJkIM6VJZolDTCJNnGmH1yhA6HJjnFV5hpQYezAytw6lgVhNxfxmWzDzvvH9d3_ZDy2pX862Vps</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Mianji, F.A.</creator><creator>Ye Zhang</creator><creator>Yanfeng Gu</creator><creator>Babakhani, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</title><author>Mianji, F.A. ; Ye Zhang ; Yanfeng Gu ; Babakhani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-95a67f6e7b529b34a1b8f99824aeb4f942440a9fc55f63cb9a856d51c6f915073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1f noise</topic><topic>Computational efficiency</topic><topic>data fusion</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image resolution</topic><topic>Least squares methods</topic><topic>Libraries</topic><topic>Pixel</topic><topic>resolution enhancement</topic><topic>Spatial resolution</topic><topic>Spectral analysis</topic><topic>spectral unmixing</topic><topic>super-resolution mapping</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Yanfeng Gu</creatorcontrib><creatorcontrib>Babakhani, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mianji, F.A.</au><au>Ye Zhang</au><au>Yanfeng Gu</au><au>Babakhani, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery</atitle><btitle>2009 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><spage>III-1011</spage><epage>III-1014</epage><pages>III-1011-III-1014</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424433940</isbn><isbn>9781424433940</isbn><eisbn>1424433959</eisbn><eisbn>9781424433957</eisbn><abstract>A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end, a linear mixture model and a constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is fast.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2009.5417949</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-1011-III-1014 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_5417949 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 1f noise Computational efficiency data fusion hyperspectral imagery Hyperspectral imaging Image resolution Least squares methods Libraries Pixel resolution enhancement Spatial resolution Spectral analysis spectral unmixing super-resolution mapping Training data |
title | Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial-spectral%20data%20fusion%20for%20resolution%20enhancement%20of%20hyperspectral%20imagery&rft.btitle=2009%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Mianji,%20F.A.&rft.date=2009-07&rft.volume=3&rft.spage=III-1011&rft.epage=III-1014&rft.pages=III-1011-III-1014&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424433940&rft.isbn_list=9781424433940&rft_id=info:doi/10.1109/IGARSS.2009.5417949&rft_dat=%3Cieee_6IE%3E5417949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424433959&rft.eisbn_list=9781424433957&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5417949&rfr_iscdi=true |