Spatial hyperspectral image classification by prior segmentation

In this paper, we propose a technique to incorporate spatial features in the classification of hyperspectral data by means of a prior segmentation of the dataset. The key idea of the technique is that each pixel is not classified individually, but that the regions obtained from the prior segmentatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Driesen, J., Thoonen, G., Scheunders, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page III-712
container_issue
container_start_page III-709
container_title
container_volume 3
creator Driesen, J.
Thoonen, G.
Scheunders, P.
description In this paper, we propose a technique to incorporate spatial features in the classification of hyperspectral data by means of a prior segmentation of the dataset. The key idea of the technique is that each pixel is not classified individually, but that the regions obtained from the prior segmentation are classified as a whole. The proposed technique is validated on a hyperspectral dataset of a heathland area in Belgium. Experimental results show that we can achieve larger and spatially smoothed regions, while the overall classification success rate is comparable to the pure spectral classification results.
doi_str_mv 10.1109/IGARSS.2009.5417861
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5417861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5417861</ieee_id><sourcerecordid>5417861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-95d26ef733ca3800d52d5d9bdcb17efab26bdcfe28c653cca33cd55ae2d6f8a23</originalsourceid><addsrcrecordid>eNpFUMtqwzAQVB-BJmm-IBf_gF29Zd0aQpMGAoW6PQdZWqUqdmIsX_z3Fa2he5ndmWEYFqE1wQUhWD8d9pv3qiooxroQnKhSkhu0IJxyzpgW-hbNKREsVxizu3-B4_tJkFrLGVqkgFITnKgHtIrxG6fhAkuu5ui56swQTJN9jR30sQM79OkKrTlDZhsTY_DBJsv1ktVj1vXh2mcRzi1chl_2Ec28aSKsJlyiz93Lx_Y1P77tD9vNMQ9EiSHXwlEJXjFmDSsxdoI64XTtbE0UeFNTmXYPtLRSMJtMzDohDFAnfWkoW6L1X24AgFPq0Zp-PE1vYT9YjFJt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial hyperspectral image classification by prior segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Driesen, J. ; Thoonen, G. ; Scheunders, P.</creator><creatorcontrib>Driesen, J. ; Thoonen, G. ; Scheunders, P.</creatorcontrib><description>In this paper, we propose a technique to incorporate spatial features in the classification of hyperspectral data by means of a prior segmentation of the dataset. The key idea of the technique is that each pixel is not classified individually, but that the regions obtained from the prior segmentation are classified as a whole. The proposed technique is validated on a hyperspectral dataset of a heathland area in Belgium. Experimental results show that we can achieve larger and spatially smoothed regions, while the overall classification success rate is comparable to the pure spectral classification results.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424433940</identifier><identifier>ISBN: 9781424433940</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1424433959</identifier><identifier>EISBN: 9781424433957</identifier><identifier>DOI: 10.1109/IGARSS.2009.5417861</identifier><identifier>LCCN: 2008910215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Clustering algorithms ; Covariance matrix ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; Image segmentation ; Maximum likelihood estimation ; Multispectral imaging ; Pixel ; Remote sensing</subject><ispartof>2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-709-III-712</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5417861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5417861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Driesen, J.</creatorcontrib><creatorcontrib>Thoonen, G.</creatorcontrib><creatorcontrib>Scheunders, P.</creatorcontrib><title>Spatial hyperspectral image classification by prior segmentation</title><title>2009 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>In this paper, we propose a technique to incorporate spatial features in the classification of hyperspectral data by means of a prior segmentation of the dataset. The key idea of the technique is that each pixel is not classified individually, but that the regions obtained from the prior segmentation are classified as a whole. The proposed technique is validated on a hyperspectral dataset of a heathland area in Belgium. Experimental results show that we can achieve larger and spatially smoothed regions, while the overall classification success rate is comparable to the pure spectral classification results.</description><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Covariance matrix</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Maximum likelihood estimation</subject><subject>Multispectral imaging</subject><subject>Pixel</subject><subject>Remote sensing</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424433940</isbn><isbn>9781424433940</isbn><isbn>1424433959</isbn><isbn>9781424433957</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtqwzAQVB-BJmm-IBf_gF29Zd0aQpMGAoW6PQdZWqUqdmIsX_z3Fa2he5ndmWEYFqE1wQUhWD8d9pv3qiooxroQnKhSkhu0IJxyzpgW-hbNKREsVxizu3-B4_tJkFrLGVqkgFITnKgHtIrxG6fhAkuu5ui56swQTJN9jR30sQM79OkKrTlDZhsTY_DBJsv1ktVj1vXh2mcRzi1chl_2Ec28aSKsJlyiz93Lx_Y1P77tD9vNMQ9EiSHXwlEJXjFmDSsxdoI64XTtbE0UeFNTmXYPtLRSMJtMzDohDFAnfWkoW6L1X24AgFPq0Zp-PE1vYT9YjFJt</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Driesen, J.</creator><creator>Thoonen, G.</creator><creator>Scheunders, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200907</creationdate><title>Spatial hyperspectral image classification by prior segmentation</title><author>Driesen, J. ; Thoonen, G. ; Scheunders, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-95d26ef733ca3800d52d5d9bdcb17efab26bdcfe28c653cca33cd55ae2d6f8a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Covariance matrix</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Maximum likelihood estimation</topic><topic>Multispectral imaging</topic><topic>Pixel</topic><topic>Remote sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Driesen, J.</creatorcontrib><creatorcontrib>Thoonen, G.</creatorcontrib><creatorcontrib>Scheunders, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Driesen, J.</au><au>Thoonen, G.</au><au>Scheunders, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial hyperspectral image classification by prior segmentation</atitle><btitle>2009 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><spage>III-709</spage><epage>III-712</epage><pages>III-709-III-712</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424433940</isbn><isbn>9781424433940</isbn><eisbn>1424433959</eisbn><eisbn>9781424433957</eisbn><abstract>In this paper, we propose a technique to incorporate spatial features in the classification of hyperspectral data by means of a prior segmentation of the dataset. The key idea of the technique is that each pixel is not classified individually, but that the regions obtained from the prior segmentation are classified as a whole. The proposed technique is validated on a hyperspectral dataset of a heathland area in Belgium. Experimental results show that we can achieve larger and spatially smoothed regions, while the overall classification success rate is comparable to the pure spectral classification results.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2009.5417861</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, Vol.3, p.III-709-III-712
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_5417861
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Clustering algorithms
Covariance matrix
Hyperspectral imaging
Hyperspectral sensors
Image classification
Image segmentation
Maximum likelihood estimation
Multispectral imaging
Pixel
Remote sensing
title Spatial hyperspectral image classification by prior segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20hyperspectral%20image%20classification%20by%20prior%20segmentation&rft.btitle=2009%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Driesen,%20J.&rft.date=2009-07&rft.volume=3&rft.spage=III-709&rft.epage=III-712&rft.pages=III-709-III-712&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424433940&rft.isbn_list=9781424433940&rft_id=info:doi/10.1109/IGARSS.2009.5417861&rft_dat=%3Cieee_6IE%3E5417861%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424433959&rft.eisbn_list=9781424433957&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5417861&rfr_iscdi=true