Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems

Network communication algorithms development is presented in the paper, with the purpose to implement bio-inspired hardware systems which exhibit the abilities of living organisms, such as: evolution capabilities, self-healing and fault-tolerance. In the first steps of these research efforts an embr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Szasz, C., Chindris, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3334
container_issue
container_start_page 3329
container_title
container_volume
creator Szasz, C.
Chindris, V.
description Network communication algorithms development is presented in the paper, with the purpose to implement bio-inspired hardware systems which exhibit the abilities of living organisms, such as: evolution capabilities, self-healing and fault-tolerance. In the first steps of these research efforts an embryonic system with bi-dimensional FPGA-based artificial cell network is designed and tested through careful computer-aided simulations. Two specially developed algorithms were implemented in the network communication strategy, in order to avoid physical faults and errors in the laboratory experimented VLSI hardware architecture. The basic challenge of all these experiments is to develop embryonic systems with fault-tolerant and self-healing properties, as main hardware structures in a large scale high security process control and industrial applications.
doi_str_mv 10.1109/IECON.2009.5415054
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5415054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5415054</ieee_id><sourcerecordid>5415054</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b01b729827b66b18cc535d240a5dee364a4f20dd6b256b269d536766a6bb6013</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhCMqWGr_gF7yB7bm6012j7K0tlDsRUG8lGTzlkayH2wipf_eij04MAzDA3MYQh44m3POqqf1ot6-zgVj1RwUBwbqiswqU3IllFIamL7-31Upb8iEA8gCjPi4I7OUvthZCrhh1YR8Lu13zEXuI462a5BaF2LIARMN7RCxxS7bHPqOHkM-0DTYEWmDMZ55R13oi9ClIYzo6cGO_viL0yllbNM9ud3bmHB2ySl5Xy7e6lWx2b6s6-dNEbiBXGjHuDOiKoVxWjteNg1I8EIxCx5RamXVXjDvtRNwtq48SG20tto5zbickse_3YCIu2EMrR1Pu8s78gctkVc2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Szasz, C. ; Chindris, V.</creator><creatorcontrib>Szasz, C. ; Chindris, V.</creatorcontrib><description>Network communication algorithms development is presented in the paper, with the purpose to implement bio-inspired hardware systems which exhibit the abilities of living organisms, such as: evolution capabilities, self-healing and fault-tolerance. In the first steps of these research efforts an embryonic system with bi-dimensional FPGA-based artificial cell network is designed and tested through careful computer-aided simulations. Two specially developed algorithms were implemented in the network communication strategy, in order to avoid physical faults and errors in the laboratory experimented VLSI hardware architecture. The basic challenge of all these experiments is to develop embryonic systems with fault-tolerant and self-healing properties, as main hardware structures in a large scale high security process control and industrial applications.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781424446483</identifier><identifier>ISBN: 1424446481</identifier><identifier>EISBN: 9781424446506</identifier><identifier>EISBN: 9781424446490</identifier><identifier>EISBN: 1424446503</identifier><identifier>EISBN: 142444649X</identifier><identifier>DOI: 10.1109/IECON.2009.5415054</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer errors ; Computer networks ; Computer simulation ; Embryo ; Fault tolerant systems ; Hardware ; Laboratories ; Organisms ; System testing</subject><ispartof>2009 35th Annual Conference of IEEE Industrial Electronics, 2009, p.3329-3334</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5415054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5415054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Szasz, C.</creatorcontrib><creatorcontrib>Chindris, V.</creatorcontrib><title>Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems</title><title>2009 35th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>Network communication algorithms development is presented in the paper, with the purpose to implement bio-inspired hardware systems which exhibit the abilities of living organisms, such as: evolution capabilities, self-healing and fault-tolerance. In the first steps of these research efforts an embryonic system with bi-dimensional FPGA-based artificial cell network is designed and tested through careful computer-aided simulations. Two specially developed algorithms were implemented in the network communication strategy, in order to avoid physical faults and errors in the laboratory experimented VLSI hardware architecture. The basic challenge of all these experiments is to develop embryonic systems with fault-tolerant and self-healing properties, as main hardware structures in a large scale high security process control and industrial applications.</description><subject>Computational modeling</subject><subject>Computer errors</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Embryo</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Laboratories</subject><subject>Organisms</subject><subject>System testing</subject><issn>1553-572X</issn><isbn>9781424446483</isbn><isbn>1424446481</isbn><isbn>9781424446506</isbn><isbn>9781424446490</isbn><isbn>1424446503</isbn><isbn>142444649X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEYhCMqWGr_gF7yB7bm6012j7K0tlDsRUG8lGTzlkayH2wipf_eij04MAzDA3MYQh44m3POqqf1ot6-zgVj1RwUBwbqiswqU3IllFIamL7-31Upb8iEA8gCjPi4I7OUvthZCrhh1YR8Lu13zEXuI462a5BaF2LIARMN7RCxxS7bHPqOHkM-0DTYEWmDMZ55R13oi9ClIYzo6cGO_viL0yllbNM9ud3bmHB2ySl5Xy7e6lWx2b6s6-dNEbiBXGjHuDOiKoVxWjteNg1I8EIxCx5RamXVXjDvtRNwtq48SG20tto5zbickse_3YCIu2EMrR1Pu8s78gctkVc2</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Szasz, C.</creator><creator>Chindris, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems</title><author>Szasz, C. ; Chindris, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b01b729827b66b18cc535d240a5dee364a4f20dd6b256b269d536766a6bb6013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational modeling</topic><topic>Computer errors</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Embryo</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Laboratories</topic><topic>Organisms</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Szasz, C.</creatorcontrib><creatorcontrib>Chindris, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szasz, C.</au><au>Chindris, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems</atitle><btitle>2009 35th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>2009-11</date><risdate>2009</risdate><spage>3329</spage><epage>3334</epage><pages>3329-3334</pages><issn>1553-572X</issn><isbn>9781424446483</isbn><isbn>1424446481</isbn><eisbn>9781424446506</eisbn><eisbn>9781424446490</eisbn><eisbn>1424446503</eisbn><eisbn>142444649X</eisbn><abstract>Network communication algorithms development is presented in the paper, with the purpose to implement bio-inspired hardware systems which exhibit the abilities of living organisms, such as: evolution capabilities, self-healing and fault-tolerance. In the first steps of these research efforts an embryonic system with bi-dimensional FPGA-based artificial cell network is designed and tested through careful computer-aided simulations. Two specially developed algorithms were implemented in the network communication strategy, in order to avoid physical faults and errors in the laboratory experimented VLSI hardware architecture. The basic challenge of all these experiments is to develop embryonic systems with fault-tolerant and self-healing properties, as main hardware structures in a large scale high security process control and industrial applications.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2009.5415054</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof 2009 35th Annual Conference of IEEE Industrial Electronics, 2009, p.3329-3334
issn 1553-572X
language eng
recordid cdi_ieee_primary_5415054
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Computer errors
Computer networks
Computer simulation
Embryo
Fault tolerant systems
Hardware
Laboratories
Organisms
System testing
title Fault-tolerance abilities implementation with spare cells in bio-inspired hardware systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault-tolerance%20abilities%20implementation%20with%20spare%20cells%20in%20bio-inspired%20hardware%20systems&rft.btitle=2009%2035th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=Szasz,%20C.&rft.date=2009-11&rft.spage=3329&rft.epage=3334&rft.pages=3329-3334&rft.issn=1553-572X&rft.isbn=9781424446483&rft.isbn_list=1424446481&rft_id=info:doi/10.1109/IECON.2009.5415054&rft_dat=%3Cieee_6IE%3E5415054%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446506&rft.eisbn_list=9781424446490&rft.eisbn_list=1424446503&rft.eisbn_list=142444649X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5415054&rfr_iscdi=true