Shapes as empirical distributions
We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape prob...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | |
container_start_page | 401 |
container_title | |
container_volume | |
creator | Pires, B.R. Moura, J.M.F. |
description | We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach. |
doi_str_mv | 10.1109/ICIP.2009.5414452 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414452</ieee_id><sourcerecordid>5414452</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb33c0b77a54d6ecb6445a5e9a7b693a88c5ed75d397d13f4484cc1d7845cfa63</originalsourceid><addsrcrecordid>eNpVj81KxDAUheMfWMd5AHFTHyA1N7k3P0spoxYGFNT1kCYpRma0NHXh2zvgbFwdDh-cj8PYFYgGQLjbru2eGymEawgBkeQRWzpjAeW-aCJxzCqpLHBL6E7-MaVPWQUkJUdrxTm7KOVDCClAQcVuXt79mErtS512Y55y8Ns65jJPuf-e89dnuWRng9-WtDzkgr3dr17bR75-eujauzXPYGjmoVcqiN4YTxh1Cr3eyz0l502vnfLWBkrRUFTORFADosUQIBqLFAav1YJd_-3mlNJmnPLOTz-bw1v1C9vNQyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shapes as empirical distributions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pires, B.R. ; Moura, J.M.F.</creator><creatorcontrib>Pires, B.R. ; Moura, J.M.F.</creatorcontrib><description>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414452</identifier><language>eng</language><publisher>IEEE</publisher><subject>affine-permutation invariance ; Constraint optimization ; Empirical shape distribution ; Iterative algorithms ; Maximum likelihood estimation ; Noise robustness ; Noise shaping ; Nonlinear distortion ; Probability distribution ; Sampling methods ; Shape ; shape classification ; shape descriptor ; shape representation ; Testing ; unlabeled data</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.401-404</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pires, B.R.</creatorcontrib><creatorcontrib>Moura, J.M.F.</creatorcontrib><title>Shapes as empirical distributions</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</description><subject>affine-permutation invariance</subject><subject>Constraint optimization</subject><subject>Empirical shape distribution</subject><subject>Iterative algorithms</subject><subject>Maximum likelihood estimation</subject><subject>Noise robustness</subject><subject>Noise shaping</subject><subject>Nonlinear distortion</subject><subject>Probability distribution</subject><subject>Sampling methods</subject><subject>Shape</subject><subject>shape classification</subject><subject>shape descriptor</subject><subject>shape representation</subject><subject>Testing</subject><subject>unlabeled data</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KxDAUheMfWMd5AHFTHyA1N7k3P0spoxYGFNT1kCYpRma0NHXh2zvgbFwdDh-cj8PYFYgGQLjbru2eGymEawgBkeQRWzpjAeW-aCJxzCqpLHBL6E7-MaVPWQUkJUdrxTm7KOVDCClAQcVuXt79mErtS512Y55y8Ns65jJPuf-e89dnuWRng9-WtDzkgr3dr17bR75-eujauzXPYGjmoVcqiN4YTxh1Cr3eyz0l502vnfLWBkrRUFTORFADosUQIBqLFAav1YJd_-3mlNJmnPLOTz-bw1v1C9vNQyw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Pires, B.R.</creator><creator>Moura, J.M.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Shapes as empirical distributions</title><author>Pires, B.R. ; Moura, J.M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb33c0b77a54d6ecb6445a5e9a7b693a88c5ed75d397d13f4484cc1d7845cfa63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>affine-permutation invariance</topic><topic>Constraint optimization</topic><topic>Empirical shape distribution</topic><topic>Iterative algorithms</topic><topic>Maximum likelihood estimation</topic><topic>Noise robustness</topic><topic>Noise shaping</topic><topic>Nonlinear distortion</topic><topic>Probability distribution</topic><topic>Sampling methods</topic><topic>Shape</topic><topic>shape classification</topic><topic>shape descriptor</topic><topic>shape representation</topic><topic>Testing</topic><topic>unlabeled data</topic><toplevel>online_resources</toplevel><creatorcontrib>Pires, B.R.</creatorcontrib><creatorcontrib>Moura, J.M.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pires, B.R.</au><au>Moura, J.M.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shapes as empirical distributions</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>401</spage><epage>404</epage><pages>401-404</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414452</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.401-404 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5414452 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | affine-permutation invariance Constraint optimization Empirical shape distribution Iterative algorithms Maximum likelihood estimation Noise robustness Noise shaping Nonlinear distortion Probability distribution Sampling methods Shape shape classification shape descriptor shape representation Testing unlabeled data |
title | Shapes as empirical distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shapes%20as%20empirical%20distributions&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Pires,%20B.R.&rft.date=2009-11&rft.spage=401&rft.epage=404&rft.pages=401-404&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414452&rft_dat=%3Cieee_6IE%3E5414452%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414452&rfr_iscdi=true |