Shapes as empirical distributions

We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pires, B.R., Moura, J.M.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue
container_start_page 401
container_title
container_volume
creator Pires, B.R.
Moura, J.M.F.
description We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.
doi_str_mv 10.1109/ICIP.2009.5414452
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414452</ieee_id><sourcerecordid>5414452</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb33c0b77a54d6ecb6445a5e9a7b693a88c5ed75d397d13f4484cc1d7845cfa63</originalsourceid><addsrcrecordid>eNpVj81KxDAUheMfWMd5AHFTHyA1N7k3P0spoxYGFNT1kCYpRma0NHXh2zvgbFwdDh-cj8PYFYgGQLjbru2eGymEawgBkeQRWzpjAeW-aCJxzCqpLHBL6E7-MaVPWQUkJUdrxTm7KOVDCClAQcVuXt79mErtS512Y55y8Ns65jJPuf-e89dnuWRng9-WtDzkgr3dr17bR75-eujauzXPYGjmoVcqiN4YTxh1Cr3eyz0l502vnfLWBkrRUFTORFADosUQIBqLFAav1YJd_-3mlNJmnPLOTz-bw1v1C9vNQyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shapes as empirical distributions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pires, B.R. ; Moura, J.M.F.</creator><creatorcontrib>Pires, B.R. ; Moura, J.M.F.</creatorcontrib><description>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414452</identifier><language>eng</language><publisher>IEEE</publisher><subject>affine-permutation invariance ; Constraint optimization ; Empirical shape distribution ; Iterative algorithms ; Maximum likelihood estimation ; Noise robustness ; Noise shaping ; Nonlinear distortion ; Probability distribution ; Sampling methods ; Shape ; shape classification ; shape descriptor ; shape representation ; Testing ; unlabeled data</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.401-404</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pires, B.R.</creatorcontrib><creatorcontrib>Moura, J.M.F.</creatorcontrib><title>Shapes as empirical distributions</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</description><subject>affine-permutation invariance</subject><subject>Constraint optimization</subject><subject>Empirical shape distribution</subject><subject>Iterative algorithms</subject><subject>Maximum likelihood estimation</subject><subject>Noise robustness</subject><subject>Noise shaping</subject><subject>Nonlinear distortion</subject><subject>Probability distribution</subject><subject>Sampling methods</subject><subject>Shape</subject><subject>shape classification</subject><subject>shape descriptor</subject><subject>shape representation</subject><subject>Testing</subject><subject>unlabeled data</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KxDAUheMfWMd5AHFTHyA1N7k3P0spoxYGFNT1kCYpRma0NHXh2zvgbFwdDh-cj8PYFYgGQLjbru2eGymEawgBkeQRWzpjAeW-aCJxzCqpLHBL6E7-MaVPWQUkJUdrxTm7KOVDCClAQcVuXt79mErtS512Y55y8Ns65jJPuf-e89dnuWRng9-WtDzkgr3dr17bR75-eujauzXPYGjmoVcqiN4YTxh1Cr3eyz0l502vnfLWBkrRUFTORFADosUQIBqLFAav1YJd_-3mlNJmnPLOTz-bw1v1C9vNQyw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Pires, B.R.</creator><creator>Moura, J.M.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Shapes as empirical distributions</title><author>Pires, B.R. ; Moura, J.M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb33c0b77a54d6ecb6445a5e9a7b693a88c5ed75d397d13f4484cc1d7845cfa63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>affine-permutation invariance</topic><topic>Constraint optimization</topic><topic>Empirical shape distribution</topic><topic>Iterative algorithms</topic><topic>Maximum likelihood estimation</topic><topic>Noise robustness</topic><topic>Noise shaping</topic><topic>Nonlinear distortion</topic><topic>Probability distribution</topic><topic>Sampling methods</topic><topic>Shape</topic><topic>shape classification</topic><topic>shape descriptor</topic><topic>shape representation</topic><topic>Testing</topic><topic>unlabeled data</topic><toplevel>online_resources</toplevel><creatorcontrib>Pires, B.R.</creatorcontrib><creatorcontrib>Moura, J.M.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pires, B.R.</au><au>Moura, J.M.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shapes as empirical distributions</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>401</spage><epage>404</epage><pages>401-404</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>We address the problem of shape based classification. We interpret the shape of an object as a probability distribution governing the location of the points of the object. An image of the object, represented as an arbitrary set of unlabeled points, corresponds to a random drawing from the shape probability distribution and can thus be analyzed as an empirical distribution. Using this framework, classification of shapes is robust to the number of points in the image and there is no need to solve the correspondence problem when comparing two images. The framework allows us to estimate geometrical transformations between images in a statistically meaningful way using maximum likelihood. We formulate the decision problem associated with shape classification as a hypothesis test for which we can characterize the performance. We particularize this framework to two-dimensional shapes related by an affine transformation. Under this assumption, we develop a descriptor invariant to affine movement, permutations, and sampling density, and robust to noise, occlusion, and reasonable non-linear deformations. Experimental results demonstrate the quality of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414452</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.401-404
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5414452
source IEEE Electronic Library (IEL) Conference Proceedings
subjects affine-permutation invariance
Constraint optimization
Empirical shape distribution
Iterative algorithms
Maximum likelihood estimation
Noise robustness
Noise shaping
Nonlinear distortion
Probability distribution
Sampling methods
Shape
shape classification
shape descriptor
shape representation
Testing
unlabeled data
title Shapes as empirical distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shapes%20as%20empirical%20distributions&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Pires,%20B.R.&rft.date=2009-11&rft.spage=401&rft.epage=404&rft.pages=401-404&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414452&rft_dat=%3Cieee_6IE%3E5414452%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414452&rfr_iscdi=true