A spectral method for context based disambiguation of image annotations

In this work we employ contextual information to improve the quality of image labellings provided by an existing automatic image annotation algorithm in a weakly supervised setting, where each training image is labelled but it is not known which part of the image its labels are referring to. We reca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Semenovich, D., Sowmya, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue
container_start_page 789
container_title
container_volume
creator Semenovich, D.
Sowmya, A.
description In this work we employ contextual information to improve the quality of image labellings provided by an existing automatic image annotation algorithm in a weakly supervised setting, where each training image is labelled but it is not known which part of the image its labels are referring to. We recast the problem into that of constructing a graph which encodes pairwise consistency of candidate annotations and observe that mutually consistent labels will form a compact cluster in this graph. We recover the clusters using a spectral theory based technique. The results are demonstrated on the Corel5k dataset. With improvements in the range of 25%-55% the performance in some cases approaches the state of the art despite using a very simple base algorithm.
doi_str_mv 10.1109/ICIP.2009.5414229
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414229</ieee_id><sourcerecordid>5414229</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2bc82a1db989a34bd9e64434401634997bdd97519bec8e0729ca7d866227d2923</originalsourceid><addsrcrecordid>eNpVkM9KAzEYxOM_cK19APGSF9iafEk2-Y5lsXWhoAc9l2STrZHubtlE0Le3aC-eZpgfDMMQcsfZgnOGD03dvCyAMVwoySUAnpE5anO0UqpKKXZOChCGl0ZJvPjHRHVJCq4ASmkMuyY3KX0wBowLXpD1kqZDaPNk97QP-X30tBsn2o5DDl-ZOpuCpz4m27u4-7Q5jgMdOxp7uwvUDsOYf7N0S646u09hftIZeVs9vtZP5eZ53dTLTRm5VrkE1xqw3Ds0aIV0HkMlpZCS8UpIRO28R604utCawDRga7U3VQWgPSCIGbn_640hhO1hOg6ZvrenT8QPihNQPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A spectral method for context based disambiguation of image annotations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Semenovich, D. ; Sowmya, A.</creator><creatorcontrib>Semenovich, D. ; Sowmya, A.</creatorcontrib><description>In this work we employ contextual information to improve the quality of image labellings provided by an existing automatic image annotation algorithm in a weakly supervised setting, where each training image is labelled but it is not known which part of the image its labels are referring to. We recast the problem into that of constructing a graph which encodes pairwise consistency of candidate annotations and observe that mutually consistent labels will form a compact cluster in this graph. We recover the clusters using a spectral theory based technique. The results are demonstrated on the Corel5k dataset. With improvements in the range of 25%-55% the performance in some cases approaches the state of the art despite using a very simple base algorithm.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414229</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Clustering algorithms ; Computer science ; Context modeling ; Image annotation ; Image recognition ; Image retrieval ; Information retrieval ; Labeling ; Layout ; Machine learning ; spectral clustering</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.789-792</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414229$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><title>A spectral method for context based disambiguation of image annotations</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In this work we employ contextual information to improve the quality of image labellings provided by an existing automatic image annotation algorithm in a weakly supervised setting, where each training image is labelled but it is not known which part of the image its labels are referring to. We recast the problem into that of constructing a graph which encodes pairwise consistency of candidate annotations and observe that mutually consistent labels will form a compact cluster in this graph. We recover the clusters using a spectral theory based technique. The results are demonstrated on the Corel5k dataset. With improvements in the range of 25%-55% the performance in some cases approaches the state of the art despite using a very simple base algorithm.</description><subject>Australia</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Context modeling</subject><subject>Image annotation</subject><subject>Image recognition</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Labeling</subject><subject>Layout</subject><subject>Machine learning</subject><subject>spectral clustering</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9KAzEYxOM_cK19APGSF9iafEk2-Y5lsXWhoAc9l2STrZHubtlE0Le3aC-eZpgfDMMQcsfZgnOGD03dvCyAMVwoySUAnpE5anO0UqpKKXZOChCGl0ZJvPjHRHVJCq4ASmkMuyY3KX0wBowLXpD1kqZDaPNk97QP-X30tBsn2o5DDl-ZOpuCpz4m27u4-7Q5jgMdOxp7uwvUDsOYf7N0S646u09hftIZeVs9vtZP5eZ53dTLTRm5VrkE1xqw3Ds0aIV0HkMlpZCS8UpIRO28R604utCawDRga7U3VQWgPSCIGbn_640hhO1hOg6ZvrenT8QPihNQPQ</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Semenovich, D.</creator><creator>Sowmya, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>A spectral method for context based disambiguation of image annotations</title><author>Semenovich, D. ; Sowmya, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2bc82a1db989a34bd9e64434401634997bdd97519bec8e0729ca7d866227d2923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Context modeling</topic><topic>Image annotation</topic><topic>Image recognition</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Labeling</topic><topic>Layout</topic><topic>Machine learning</topic><topic>spectral clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Semenovich, D.</au><au>Sowmya, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A spectral method for context based disambiguation of image annotations</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>789</spage><epage>792</epage><pages>789-792</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>In this work we employ contextual information to improve the quality of image labellings provided by an existing automatic image annotation algorithm in a weakly supervised setting, where each training image is labelled but it is not known which part of the image its labels are referring to. We recast the problem into that of constructing a graph which encodes pairwise consistency of candidate annotations and observe that mutually consistent labels will form a compact cluster in this graph. We recover the clusters using a spectral theory based technique. The results are demonstrated on the Corel5k dataset. With improvements in the range of 25%-55% the performance in some cases approaches the state of the art despite using a very simple base algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414229</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.789-792
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5414229
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Clustering algorithms
Computer science
Context modeling
Image annotation
Image recognition
Image retrieval
Information retrieval
Labeling
Layout
Machine learning
spectral clustering
title A spectral method for context based disambiguation of image annotations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20spectral%20method%20for%20context%20based%20disambiguation%20of%20image%20annotations&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Semenovich,%20D.&rft.date=2009-11&rft.spage=789&rft.epage=792&rft.pages=789-792&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414229&rft_dat=%3Cieee_6IE%3E5414229%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414229&rfr_iscdi=true