Restoration of digitized video sequences: An efficient drop-out detection and removal framework

Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaprykowsky, H., Mohan Liu, Ndjiki-Nya, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 85
container_title
container_volume
creator Kaprykowsky, H.
Mohan Liu
Ndjiki-Nya, P.
description Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.
doi_str_mv 10.1109/ICIP.2009.5414099
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414099</ieee_id><sourcerecordid>5414099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-81ff060c36efa14230a2b164d60f9cc8f61a120741b7ce1bfa0300fd125476993</originalsourceid><addsrcrecordid>eNpVkFtLAzEUhOMNrLU_QHzJH9h6Tm6b-FaKl0JBEX1e0s2JRNtN3d1W9NdbtC8-zcDwDcMwdoEwRgR3NZvOHscCwI21QgXOHbCRKy0qoZQ2WsMhGwhpsbBauaN_mTTHbIBaiEJZC6fsrOveAASgxAGrnqjrc-v7lBueIw_pNfXpmwLfpkCZd_Sxoaam7ppPGk4xpjpR0_PQ5nWRNztDPdW_tG8Cb2mVt37JY-tX9Jnb93N2Ev2yo9Feh-zl9uZ5el_MH-5m08m8SFjqvrAYIxiopaHod8MleLFAo4KB6OraRoMeBZQKF2VNuIgeJEAMKLQqjXNyyC7_ehMRVes2rXz7Ve2_kj8YAVmX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</creator><creatorcontrib>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</creatorcontrib><description>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414099</identifier><language>eng</language><publisher>IEEE</publisher><subject>Colored noise ; Conducting materials ; Cultural differences ; defect detection ; defect removal ; drop-out ; Image communication ; Image restoration ; Magnetic heads ; Motion compensation ; Motion detection ; quad-tree ; Restoration ; Video compression ; Video sequences</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.85-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaprykowsky, H.</creatorcontrib><creatorcontrib>Mohan Liu</creatorcontrib><creatorcontrib>Ndjiki-Nya, P.</creatorcontrib><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</description><subject>Colored noise</subject><subject>Conducting materials</subject><subject>Cultural differences</subject><subject>defect detection</subject><subject>defect removal</subject><subject>drop-out</subject><subject>Image communication</subject><subject>Image restoration</subject><subject>Magnetic heads</subject><subject>Motion compensation</subject><subject>Motion detection</subject><subject>quad-tree</subject><subject>Restoration</subject><subject>Video compression</subject><subject>Video sequences</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkFtLAzEUhOMNrLU_QHzJH9h6Tm6b-FaKl0JBEX1e0s2JRNtN3d1W9NdbtC8-zcDwDcMwdoEwRgR3NZvOHscCwI21QgXOHbCRKy0qoZQ2WsMhGwhpsbBauaN_mTTHbIBaiEJZC6fsrOveAASgxAGrnqjrc-v7lBueIw_pNfXpmwLfpkCZd_Sxoaam7ppPGk4xpjpR0_PQ5nWRNztDPdW_tG8Cb2mVt37JY-tX9Jnb93N2Ev2yo9Feh-zl9uZ5el_MH-5m08m8SFjqvrAYIxiopaHod8MleLFAo4KB6OraRoMeBZQKF2VNuIgeJEAMKLQqjXNyyC7_ehMRVes2rXz7Ve2_kj8YAVmX</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Kaprykowsky, H.</creator><creator>Mohan Liu</creator><creator>Ndjiki-Nya, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><author>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-81ff060c36efa14230a2b164d60f9cc8f61a120741b7ce1bfa0300fd125476993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Colored noise</topic><topic>Conducting materials</topic><topic>Cultural differences</topic><topic>defect detection</topic><topic>defect removal</topic><topic>drop-out</topic><topic>Image communication</topic><topic>Image restoration</topic><topic>Magnetic heads</topic><topic>Motion compensation</topic><topic>Motion detection</topic><topic>quad-tree</topic><topic>Restoration</topic><topic>Video compression</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaprykowsky, H.</creatorcontrib><creatorcontrib>Mohan Liu</creatorcontrib><creatorcontrib>Ndjiki-Nya, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaprykowsky, H.</au><au>Mohan Liu</au><au>Ndjiki-Nya, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>85</spage><epage>88</epage><pages>85-88</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414099</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.85-88
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5414099
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Colored noise
Conducting materials
Cultural differences
defect detection
defect removal
drop-out
Image communication
Image restoration
Magnetic heads
Motion compensation
Motion detection
quad-tree
Restoration
Video compression
Video sequences
title Restoration of digitized video sequences: An efficient drop-out detection and removal framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Restoration%20of%20digitized%20video%20sequences:%20An%20efficient%20drop-out%20detection%20and%20removal%20framework&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Kaprykowsky,%20H.&rft.date=2009-11&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414099&rft_dat=%3Cieee_6IE%3E5414099%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414099&rfr_iscdi=true