Restoration of digitized video sequences: An efficient drop-out detection and removal framework
Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 85 |
container_title | |
container_volume | |
creator | Kaprykowsky, H. Mohan Liu Ndjiki-Nya, P. |
description | Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results. |
doi_str_mv | 10.1109/ICIP.2009.5414099 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5414099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5414099</ieee_id><sourcerecordid>5414099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-81ff060c36efa14230a2b164d60f9cc8f61a120741b7ce1bfa0300fd125476993</originalsourceid><addsrcrecordid>eNpVkFtLAzEUhOMNrLU_QHzJH9h6Tm6b-FaKl0JBEX1e0s2JRNtN3d1W9NdbtC8-zcDwDcMwdoEwRgR3NZvOHscCwI21QgXOHbCRKy0qoZQ2WsMhGwhpsbBauaN_mTTHbIBaiEJZC6fsrOveAASgxAGrnqjrc-v7lBueIw_pNfXpmwLfpkCZd_Sxoaam7ppPGk4xpjpR0_PQ5nWRNztDPdW_tG8Cb2mVt37JY-tX9Jnb93N2Ev2yo9Feh-zl9uZ5el_MH-5m08m8SFjqvrAYIxiopaHod8MleLFAo4KB6OraRoMeBZQKF2VNuIgeJEAMKLQqjXNyyC7_ehMRVes2rXz7Ve2_kj8YAVmX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</creator><creatorcontrib>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</creatorcontrib><description>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5414099</identifier><language>eng</language><publisher>IEEE</publisher><subject>Colored noise ; Conducting materials ; Cultural differences ; defect detection ; defect removal ; drop-out ; Image communication ; Image restoration ; Magnetic heads ; Motion compensation ; Motion detection ; quad-tree ; Restoration ; Video compression ; Video sequences</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.85-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5414099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5414099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaprykowsky, H.</creatorcontrib><creatorcontrib>Mohan Liu</creatorcontrib><creatorcontrib>Ndjiki-Nya, P.</creatorcontrib><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</description><subject>Colored noise</subject><subject>Conducting materials</subject><subject>Cultural differences</subject><subject>defect detection</subject><subject>defect removal</subject><subject>drop-out</subject><subject>Image communication</subject><subject>Image restoration</subject><subject>Magnetic heads</subject><subject>Motion compensation</subject><subject>Motion detection</subject><subject>quad-tree</subject><subject>Restoration</subject><subject>Video compression</subject><subject>Video sequences</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkFtLAzEUhOMNrLU_QHzJH9h6Tm6b-FaKl0JBEX1e0s2JRNtN3d1W9NdbtC8-zcDwDcMwdoEwRgR3NZvOHscCwI21QgXOHbCRKy0qoZQ2WsMhGwhpsbBauaN_mTTHbIBaiEJZC6fsrOveAASgxAGrnqjrc-v7lBueIw_pNfXpmwLfpkCZd_Sxoaam7ppPGk4xpjpR0_PQ5nWRNztDPdW_tG8Cb2mVt37JY-tX9Jnb93N2Ev2yo9Feh-zl9uZ5el_MH-5m08m8SFjqvrAYIxiopaHod8MleLFAo4KB6OraRoMeBZQKF2VNuIgeJEAMKLQqjXNyyC7_ehMRVes2rXz7Ve2_kj8YAVmX</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Kaprykowsky, H.</creator><creator>Mohan Liu</creator><creator>Ndjiki-Nya, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</title><author>Kaprykowsky, H. ; Mohan Liu ; Ndjiki-Nya, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-81ff060c36efa14230a2b164d60f9cc8f61a120741b7ce1bfa0300fd125476993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Colored noise</topic><topic>Conducting materials</topic><topic>Cultural differences</topic><topic>defect detection</topic><topic>defect removal</topic><topic>drop-out</topic><topic>Image communication</topic><topic>Image restoration</topic><topic>Magnetic heads</topic><topic>Motion compensation</topic><topic>Motion detection</topic><topic>quad-tree</topic><topic>Restoration</topic><topic>Video compression</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaprykowsky, H.</creatorcontrib><creatorcontrib>Mohan Liu</creatorcontrib><creatorcontrib>Ndjiki-Nya, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaprykowsky, H.</au><au>Mohan Liu</au><au>Ndjiki-Nya, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Restoration of digitized video sequences: An efficient drop-out detection and removal framework</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>85</spage><epage>88</epage><pages>85-88</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>Millions of hours of valuable audiovisual content is endangered or already destroyed. Today, restoration is mainly done manually, which is time-consuming, costly and thus simply infeasible for large amounts of data. For this reason, automation of restoration efforts is of major importance to win the race against time. In this paper, a framework for efficient drop-out detection and restoration is presented. This artifact class is one of the most frequently occurring in video archives. The proposed detection algorithm is a two-pass approach, where frames of the potentially deteriorated video sequences are classified into valid and suspect based on global color statistics of the images. Suspect pictures are further submitted to local, quad-tree-based analysis for refined evaluations. This yields a subset of identified damaged pictures with accurately localized defects. Detected defective frames are restored using a motion compensation-based approach. Experiments on a data set based on video sequences of the ¿PrestoSpace¿ project show very promising results.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5414099</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.85-88 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5414099 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Colored noise Conducting materials Cultural differences defect detection defect removal drop-out Image communication Image restoration Magnetic heads Motion compensation Motion detection quad-tree Restoration Video compression Video sequences |
title | Restoration of digitized video sequences: An efficient drop-out detection and removal framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Restoration%20of%20digitized%20video%20sequences:%20An%20efficient%20drop-out%20detection%20and%20removal%20framework&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Kaprykowsky,%20H.&rft.date=2009-11&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5414099&rft_dat=%3Cieee_6IE%3E5414099%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5414099&rfr_iscdi=true |