Quantitative assessment of breast dense tissue on mammograms

This paper presents a method to automatically segment dense tissue from mammography images. The method uses unsupervised learning and multiple levels of detail (LoD) to adapt itself to various image characteristics and generate robust segmentation result, which can potentially be of great help in su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhiqiang Lao, Zhimin Huo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2608
container_issue
container_start_page 2605
container_title
container_volume
creator Zhiqiang Lao
Zhimin Huo
description This paper presents a method to automatically segment dense tissue from mammography images. The method uses unsupervised learning and multiple levels of detail (LoD) to adapt itself to various image characteristics and generate robust segmentation result, which can potentially be of great help in surveillance breast health and detecting breast cancer at early stage. Multiple LoD used in the method include 1. Initial entropy maximum based thresholding (low LoD); 2. FCM based ¿soft-threshold¿ estimation (mid LoD); 3 Pixel-wise dense tissue feature evaluation (high LodD). The performance validation, based on 220 cases from 6 different mammographic data sets, shows a strong correlation between computer and clinical BI-RADS ratings.
doi_str_mv 10.1109/ICIP.2009.5413991
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413991</ieee_id><sourcerecordid>5413991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c2aa7b2efde5358216fd70b04c733766fc77d97c005e998b5739b70bf8be5e9c3</originalsourceid><addsrcrecordid>eNpVkMtKxDAYheMNrOM8gLjJC7T-uTUJuJFh1MKACroekvaPREwrTUbw7R1wNq4OnO_wLQ4hVwwaxsDedKvuueEAtlGSCWvZEVlabZjkUqpWKTgmFReG1UZJe_KPifaUVExxXktj4Jxc5PwBwIEJVpHbl50bSyyuxG-kLmfMOeFY6BSon9HlQgccM9ISc94hnUaaXErT--xSviRnwX1mXB5yQd7u16-rx3rz9NCt7jZ1ZFqVuufOac8xDKiEMpy1YdDgQfZaCN22odd6sLoHUGit8UoL6_eDYDzum14syPWfNyLi9muOyc0_28MR4hcewU2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantitative assessment of breast dense tissue on mammograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhiqiang Lao ; Zhimin Huo</creator><creatorcontrib>Zhiqiang Lao ; Zhimin Huo</creatorcontrib><description>This paper presents a method to automatically segment dense tissue from mammography images. The method uses unsupervised learning and multiple levels of detail (LoD) to adapt itself to various image characteristics and generate robust segmentation result, which can potentially be of great help in surveillance breast health and detecting breast cancer at early stage. Multiple LoD used in the method include 1. Initial entropy maximum based thresholding (low LoD); 2. FCM based ¿soft-threshold¿ estimation (mid LoD); 3 Pixel-wise dense tissue feature evaluation (high LodD). The performance validation, based on 220 cases from 6 different mammographic data sets, shows a strong correlation between computer and clinical BI-RADS ratings.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413991</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Breast density quantification ; Cancer detection ; Character generation ; computer aided diagnosis ; Entropy ; Fuzzy C-means ; Image generation ; Image segmentation ; Mammography ; parenchymal patterns ; Robustness ; Surveillance ; Unsupervised learning</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2605-2608</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhiqiang Lao</creatorcontrib><creatorcontrib>Zhimin Huo</creatorcontrib><title>Quantitative assessment of breast dense tissue on mammograms</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This paper presents a method to automatically segment dense tissue from mammography images. The method uses unsupervised learning and multiple levels of detail (LoD) to adapt itself to various image characteristics and generate robust segmentation result, which can potentially be of great help in surveillance breast health and detecting breast cancer at early stage. Multiple LoD used in the method include 1. Initial entropy maximum based thresholding (low LoD); 2. FCM based ¿soft-threshold¿ estimation (mid LoD); 3 Pixel-wise dense tissue feature evaluation (high LodD). The performance validation, based on 220 cases from 6 different mammographic data sets, shows a strong correlation between computer and clinical BI-RADS ratings.</description><subject>Breast cancer</subject><subject>Breast density quantification</subject><subject>Cancer detection</subject><subject>Character generation</subject><subject>computer aided diagnosis</subject><subject>Entropy</subject><subject>Fuzzy C-means</subject><subject>Image generation</subject><subject>Image segmentation</subject><subject>Mammography</subject><subject>parenchymal patterns</subject><subject>Robustness</subject><subject>Surveillance</subject><subject>Unsupervised learning</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAYheMNrOM8gLjJC7T-uTUJuJFh1MKACroekvaPREwrTUbw7R1wNq4OnO_wLQ4hVwwaxsDedKvuueEAtlGSCWvZEVlabZjkUqpWKTgmFReG1UZJe_KPifaUVExxXktj4Jxc5PwBwIEJVpHbl50bSyyuxG-kLmfMOeFY6BSon9HlQgccM9ISc94hnUaaXErT--xSviRnwX1mXB5yQd7u16-rx3rz9NCt7jZ1ZFqVuufOac8xDKiEMpy1YdDgQfZaCN22odd6sLoHUGit8UoL6_eDYDzum14syPWfNyLi9muOyc0_28MR4hcewU2A</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Zhiqiang Lao</creator><creator>Zhimin Huo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Quantitative assessment of breast dense tissue on mammograms</title><author>Zhiqiang Lao ; Zhimin Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c2aa7b2efde5358216fd70b04c733766fc77d97c005e998b5739b70bf8be5e9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Breast cancer</topic><topic>Breast density quantification</topic><topic>Cancer detection</topic><topic>Character generation</topic><topic>computer aided diagnosis</topic><topic>Entropy</topic><topic>Fuzzy C-means</topic><topic>Image generation</topic><topic>Image segmentation</topic><topic>Mammography</topic><topic>parenchymal patterns</topic><topic>Robustness</topic><topic>Surveillance</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhiqiang Lao</creatorcontrib><creatorcontrib>Zhimin Huo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiqiang Lao</au><au>Zhimin Huo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantitative assessment of breast dense tissue on mammograms</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>2605</spage><epage>2608</epage><pages>2605-2608</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>This paper presents a method to automatically segment dense tissue from mammography images. The method uses unsupervised learning and multiple levels of detail (LoD) to adapt itself to various image characteristics and generate robust segmentation result, which can potentially be of great help in surveillance breast health and detecting breast cancer at early stage. Multiple LoD used in the method include 1. Initial entropy maximum based thresholding (low LoD); 2. FCM based ¿soft-threshold¿ estimation (mid LoD); 3 Pixel-wise dense tissue feature evaluation (high LodD). The performance validation, based on 220 cases from 6 different mammographic data sets, shows a strong correlation between computer and clinical BI-RADS ratings.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413991</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2605-2608
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5413991
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Breast cancer
Breast density quantification
Cancer detection
Character generation
computer aided diagnosis
Entropy
Fuzzy C-means
Image generation
Image segmentation
Mammography
parenchymal patterns
Robustness
Surveillance
Unsupervised learning
title Quantitative assessment of breast dense tissue on mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantitative%20assessment%20of%20breast%20dense%20tissue%20on%20mammograms&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Zhiqiang%20Lao&rft.date=2009-11&rft.spage=2605&rft.epage=2608&rft.pages=2605-2608&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413991&rft_dat=%3Cieee_6IE%3E5413991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413991&rfr_iscdi=true