Natural image utility assessment using image contours
In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging sys...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220 |
---|---|
container_issue | |
container_start_page | 2217 |
container_title | |
container_volume | |
creator | Rouse, D.M. Hemami, S.S. |
description | In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms. |
doi_str_mv | 10.1109/ICIP.2009.5413882 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413882</ieee_id><sourcerecordid>5413882</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bfe5cf26be82a052eee01eed5a1c8b16084d7ef3e98c8d8c437637439e14523e3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc1LIpR-AGKTH0jw2J5kvEQRj0gVsIB15SSTyihNUews-vdUIhtWd3F0j66uEHcgcwBpH-qq_siVlDZHA5pInYm1LQmMMgYLRHkuEqUJMkJjL_4xXVyKBFCpzBDJa3ETwreUSoKGROCbi_PkhtTv3Y7TOfrBx2PqQuAQ9jzGdA5-3C24PYzxME_hVlz1bgi8XnIlvp6fPqvXbPP-UlePm8xDiTFresa2V0XDpJxExcwSmDt00FIDhSTTldxrttRSR63RZaFLoy2DQaVZr8T9n9efqtuf6bRiOm6XB_QvxIpK_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Natural image utility assessment using image contours</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rouse, D.M. ; Hemami, S.S.</creator><creatorcontrib>Rouse, D.M. ; Hemami, S.S.</creatorcontrib><description>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413882</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; edge detection ; Humans ; Image databases ; Image edge detection ; Image generation ; Law enforcement ; Optical imaging ; Quality assessment ; Testing ; utility assessment ; Visual databases</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2217-2220</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><title>Natural image utility assessment using image contours</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</description><subject>Cameras</subject><subject>edge detection</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image edge detection</subject><subject>Image generation</subject><subject>Law enforcement</subject><subject>Optical imaging</subject><subject>Quality assessment</subject><subject>Testing</subject><subject>utility assessment</subject><subject>Visual databases</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRc1LIpR-AGKTH0jw2J5kvEQRj0gVsIB15SSTyihNUews-vdUIhtWd3F0j66uEHcgcwBpH-qq_siVlDZHA5pInYm1LQmMMgYLRHkuEqUJMkJjL_4xXVyKBFCpzBDJa3ETwreUSoKGROCbi_PkhtTv3Y7TOfrBx2PqQuAQ9jzGdA5-3C24PYzxME_hVlz1bgi8XnIlvp6fPqvXbPP-UlePm8xDiTFresa2V0XDpJxExcwSmDt00FIDhSTTldxrttRSR63RZaFLoy2DQaVZr8T9n9efqtuf6bRiOm6XB_QvxIpK_Q</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Rouse, D.M.</creator><creator>Hemami, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Natural image utility assessment using image contours</title><author>Rouse, D.M. ; Hemami, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bfe5cf26be82a052eee01eed5a1c8b16084d7ef3e98c8d8c437637439e14523e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cameras</topic><topic>edge detection</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image edge detection</topic><topic>Image generation</topic><topic>Law enforcement</topic><topic>Optical imaging</topic><topic>Quality assessment</topic><topic>Testing</topic><topic>utility assessment</topic><topic>Visual databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rouse, D.M.</au><au>Hemami, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Natural image utility assessment using image contours</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>2217</spage><epage>2220</epage><pages>2217-2220</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413882</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2217-2220 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5413882 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras edge detection Humans Image databases Image edge detection Image generation Law enforcement Optical imaging Quality assessment Testing utility assessment Visual databases |
title | Natural image utility assessment using image contours |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Natural%20image%20utility%20assessment%20using%20image%20contours&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Rouse,%20D.M.&rft.date=2009-11&rft.spage=2217&rft.epage=2220&rft.pages=2217-2220&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413882&rft_dat=%3Cieee_6IE%3E5413882%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413882&rfr_iscdi=true |