Natural image utility assessment using image contours

In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rouse, D.M., Hemami, S.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue
container_start_page 2217
container_title
container_volume
creator Rouse, D.M.
Hemami, S.S.
description In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.
doi_str_mv 10.1109/ICIP.2009.5413882
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413882</ieee_id><sourcerecordid>5413882</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bfe5cf26be82a052eee01eed5a1c8b16084d7ef3e98c8d8c437637439e14523e3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc1LIpR-AGKTH0jw2J5kvEQRj0gVsIB15SSTyihNUews-vdUIhtWd3F0j66uEHcgcwBpH-qq_siVlDZHA5pInYm1LQmMMgYLRHkuEqUJMkJjL_4xXVyKBFCpzBDJa3ETwreUSoKGROCbi_PkhtTv3Y7TOfrBx2PqQuAQ9jzGdA5-3C24PYzxME_hVlz1bgi8XnIlvp6fPqvXbPP-UlePm8xDiTFresa2V0XDpJxExcwSmDt00FIDhSTTldxrttRSR63RZaFLoy2DQaVZr8T9n9efqtuf6bRiOm6XB_QvxIpK_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Natural image utility assessment using image contours</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rouse, D.M. ; Hemami, S.S.</creator><creatorcontrib>Rouse, D.M. ; Hemami, S.S.</creatorcontrib><description>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413882</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; edge detection ; Humans ; Image databases ; Image edge detection ; Image generation ; Law enforcement ; Optical imaging ; Quality assessment ; Testing ; utility assessment ; Visual databases</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2217-2220</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><title>Natural image utility assessment using image contours</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</description><subject>Cameras</subject><subject>edge detection</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image edge detection</subject><subject>Image generation</subject><subject>Law enforcement</subject><subject>Optical imaging</subject><subject>Quality assessment</subject><subject>Testing</subject><subject>utility assessment</subject><subject>Visual databases</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRc1LIpR-AGKTH0jw2J5kvEQRj0gVsIB15SSTyihNUews-vdUIhtWd3F0j66uEHcgcwBpH-qq_siVlDZHA5pInYm1LQmMMgYLRHkuEqUJMkJjL_4xXVyKBFCpzBDJa3ETwreUSoKGROCbi_PkhtTv3Y7TOfrBx2PqQuAQ9jzGdA5-3C24PYzxME_hVlz1bgi8XnIlvp6fPqvXbPP-UlePm8xDiTFresa2V0XDpJxExcwSmDt00FIDhSTTldxrttRSR63RZaFLoy2DQaVZr8T9n9efqtuf6bRiOm6XB_QvxIpK_Q</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Rouse, D.M.</creator><creator>Hemami, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Natural image utility assessment using image contours</title><author>Rouse, D.M. ; Hemami, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bfe5cf26be82a052eee01eed5a1c8b16084d7ef3e98c8d8c437637439e14523e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cameras</topic><topic>edge detection</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image edge detection</topic><topic>Image generation</topic><topic>Law enforcement</topic><topic>Optical imaging</topic><topic>Quality assessment</topic><topic>Testing</topic><topic>utility assessment</topic><topic>Visual databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Rouse, D.M.</creatorcontrib><creatorcontrib>Hemami, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rouse, D.M.</au><au>Hemami, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Natural image utility assessment using image contours</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>2217</spage><epage>2220</epage><pages>2217-2220</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>In the quality assessment task, observers evaluate a natural image based on its perceptual resemblance to a reference. For the utility assessment task, observers evaluate the usefulness of a natural image as a surrogate for a reference. Humans generally use the information captured by an imaging system and tolerate distortions as long as the underlying task is performed reliably. Conventional notions of perceived quality cannot generally predict the perceived utility of a natural image. This paper examines variations to basic components of a recently introduced utility assessment algorithm that compares the contours of a reference and test image, referred to as the natural image contour evaluation (NICE), in terms of their capability to improve the prediction of perceived utility scores. Results show that classical edge-detection algorithms incorporated into NICE provide statistically equivalent performance to other, more complex edge-detection algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413882</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2217-2220
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5413882
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
edge detection
Humans
Image databases
Image edge detection
Image generation
Law enforcement
Optical imaging
Quality assessment
Testing
utility assessment
Visual databases
title Natural image utility assessment using image contours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Natural%20image%20utility%20assessment%20using%20image%20contours&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Rouse,%20D.M.&rft.date=2009-11&rft.spage=2217&rft.epage=2220&rft.pages=2217-2220&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413882&rft_dat=%3Cieee_6IE%3E5413882%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413882&rfr_iscdi=true