An unsupervised image segmentation algorithm based on the machine learning of appropriate features

This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automaticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sang Hak Lee, Hyung Il Koo, Nam Ik Cho
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4040
container_issue
container_start_page 4037
container_title
container_volume
creator Sang Hak Lee
Hyung Il Koo
Nam Ik Cho
description This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.
doi_str_mv 10.1109/ICIP.2009.5413758
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413758</ieee_id><sourcerecordid>5413758</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e69ce15867bf167e70b97a04556c897a6d8251bc9e75d8dd27925d5f29808a0b3</originalsourceid><addsrcrecordid>eNpVUMlOwzAUNJtEKP0AxMU_kGI7fl6OVcVSqRIc4Fw5yUtq1DiR7SLx9xTRC6cZzYxGoyHkjrMF58w-rFfrt4VgzC5A8kqDOSNzqw2XQkpQAOycFKIyvDQg7cU_r1KXpOAgRCmNYdfkJqVPxgTjFS9IvQz0ENJhwvjlE7bUD65HmrAfMGSX_Rio2_dj9Hk30Nr9Ro5S3iEdXLPzAekeXQw-9HTsqJumOE7Ru4y0Q5cPEdMtuercPuH8hDPy8fT4vnopN6_P69VyU3quIZeobIMcjNJ1x5VGzWqrHZMAqjFHplojgNeNRQ2taVuhrYAWOmENM47V1Yzc__V6RNweRwwufm9Pd1U_f9ZbEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</creator><creatorcontrib>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</creatorcontrib><description>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413758</identifier><language>eng</language><publisher>IEEE</publisher><subject>AdaBoost ; Boosting ; Clustering algorithms ; EM-like minimization ; Image analysis ; Image segmentation ; Labeling ; Layout ; Machine learning ; Machine learning algorithms ; Partitioning algorithms ; Spatial coherence ; unsupervised image segmentation</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.4037-4040</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sang Hak Lee</creatorcontrib><creatorcontrib>Hyung Il Koo</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</description><subject>AdaBoost</subject><subject>Boosting</subject><subject>Clustering algorithms</subject><subject>EM-like minimization</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Layout</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Partitioning algorithms</subject><subject>Spatial coherence</subject><subject>unsupervised image segmentation</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAUNJtEKP0AxMU_kGI7fl6OVcVSqRIc4Fw5yUtq1DiR7SLx9xTRC6cZzYxGoyHkjrMF58w-rFfrt4VgzC5A8kqDOSNzqw2XQkpQAOycFKIyvDQg7cU_r1KXpOAgRCmNYdfkJqVPxgTjFS9IvQz0ENJhwvjlE7bUD65HmrAfMGSX_Rio2_dj9Hk30Nr9Ro5S3iEdXLPzAekeXQw-9HTsqJumOE7Ru4y0Q5cPEdMtuercPuH8hDPy8fT4vnopN6_P69VyU3quIZeobIMcjNJ1x5VGzWqrHZMAqjFHplojgNeNRQ2taVuhrYAWOmENM47V1Yzc__V6RNweRwwufm9Pd1U_f9ZbEw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Sang Hak Lee</creator><creator>Hyung Il Koo</creator><creator>Nam Ik Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><author>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e69ce15867bf167e70b97a04556c897a6d8251bc9e75d8dd27925d5f29808a0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AdaBoost</topic><topic>Boosting</topic><topic>Clustering algorithms</topic><topic>EM-like minimization</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Layout</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Partitioning algorithms</topic><topic>Spatial coherence</topic><topic>unsupervised image segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sang Hak Lee</creatorcontrib><creatorcontrib>Hyung Il Koo</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sang Hak Lee</au><au>Hyung Il Koo</au><au>Nam Ik Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>4037</spage><epage>4040</epage><pages>4037-4040</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413758</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.4037-4040
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5413758
source IEEE Electronic Library (IEL) Conference Proceedings
subjects AdaBoost
Boosting
Clustering algorithms
EM-like minimization
Image analysis
Image segmentation
Labeling
Layout
Machine learning
Machine learning algorithms
Partitioning algorithms
Spatial coherence
unsupervised image segmentation
title An unsupervised image segmentation algorithm based on the machine learning of appropriate features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20unsupervised%20image%20segmentation%20algorithm%20based%20on%20the%20machine%20learning%20of%20appropriate%20features&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Sang%20Hak%20Lee&rft.date=2009-11&rft.spage=4037&rft.epage=4040&rft.pages=4037-4040&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413758&rft_dat=%3Cieee_6IE%3E5413758%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413758&rfr_iscdi=true