An unsupervised image segmentation algorithm based on the machine learning of appropriate features
This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automaticall...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4040 |
---|---|
container_issue | |
container_start_page | 4037 |
container_title | |
container_volume | |
creator | Sang Hak Lee Hyung Il Koo Nam Ik Cho |
description | This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods. |
doi_str_mv | 10.1109/ICIP.2009.5413758 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413758</ieee_id><sourcerecordid>5413758</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e69ce15867bf167e70b97a04556c897a6d8251bc9e75d8dd27925d5f29808a0b3</originalsourceid><addsrcrecordid>eNpVUMlOwzAUNJtEKP0AxMU_kGI7fl6OVcVSqRIc4Fw5yUtq1DiR7SLx9xTRC6cZzYxGoyHkjrMF58w-rFfrt4VgzC5A8kqDOSNzqw2XQkpQAOycFKIyvDQg7cU_r1KXpOAgRCmNYdfkJqVPxgTjFS9IvQz0ENJhwvjlE7bUD65HmrAfMGSX_Rio2_dj9Hk30Nr9Ro5S3iEdXLPzAekeXQw-9HTsqJumOE7Ru4y0Q5cPEdMtuercPuH8hDPy8fT4vnopN6_P69VyU3quIZeobIMcjNJ1x5VGzWqrHZMAqjFHplojgNeNRQ2taVuhrYAWOmENM47V1Yzc__V6RNweRwwufm9Pd1U_f9ZbEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</creator><creatorcontrib>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</creatorcontrib><description>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413758</identifier><language>eng</language><publisher>IEEE</publisher><subject>AdaBoost ; Boosting ; Clustering algorithms ; EM-like minimization ; Image analysis ; Image segmentation ; Labeling ; Layout ; Machine learning ; Machine learning algorithms ; Partitioning algorithms ; Spatial coherence ; unsupervised image segmentation</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.4037-4040</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sang Hak Lee</creatorcontrib><creatorcontrib>Hyung Il Koo</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</description><subject>AdaBoost</subject><subject>Boosting</subject><subject>Clustering algorithms</subject><subject>EM-like minimization</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Layout</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Partitioning algorithms</subject><subject>Spatial coherence</subject><subject>unsupervised image segmentation</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAUNJtEKP0AxMU_kGI7fl6OVcVSqRIc4Fw5yUtq1DiR7SLx9xTRC6cZzYxGoyHkjrMF58w-rFfrt4VgzC5A8kqDOSNzqw2XQkpQAOycFKIyvDQg7cU_r1KXpOAgRCmNYdfkJqVPxgTjFS9IvQz0ENJhwvjlE7bUD65HmrAfMGSX_Rio2_dj9Hk30Nr9Ro5S3iEdXLPzAekeXQw-9HTsqJumOE7Ru4y0Q5cPEdMtuercPuH8hDPy8fT4vnopN6_P69VyU3quIZeobIMcjNJ1x5VGzWqrHZMAqjFHplojgNeNRQ2taVuhrYAWOmENM47V1Yzc__V6RNweRwwufm9Pd1U_f9ZbEw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Sang Hak Lee</creator><creator>Hyung Il Koo</creator><creator>Nam Ik Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</title><author>Sang Hak Lee ; Hyung Il Koo ; Nam Ik Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e69ce15867bf167e70b97a04556c897a6d8251bc9e75d8dd27925d5f29808a0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AdaBoost</topic><topic>Boosting</topic><topic>Clustering algorithms</topic><topic>EM-like minimization</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Layout</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Partitioning algorithms</topic><topic>Spatial coherence</topic><topic>unsupervised image segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sang Hak Lee</creatorcontrib><creatorcontrib>Hyung Il Koo</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sang Hak Lee</au><au>Hyung Il Koo</au><au>Nam Ik Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An unsupervised image segmentation algorithm based on the machine learning of appropriate features</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>4037</spage><epage>4040</epage><pages>4037-4040</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningful region from the others. In this paper, the appropriate features are automatically learnt by machine learning with boosting scheme. At the initial step, the image is split into many small regions (blocks at first) and strong classifiers for every region, which discriminate the region from the others, are found by AdaBoosting. Each strong classifier so obtained is the weighted sum of several popular weak classifiers (features), which best describes the coherence of the region and thus well discriminates the region from the others. The output of this classifier is used in designing the energy function for the labeling, in the form of conditional random fields (CRFs). Minimization of the energy function produces the labeling result which reflects the property learnt by the classifier. For the labeling result, the machine learning is again performed and the process iterates until some conditions are met. Experimental results show that the proposed method provides competitive result compared to the conventional feature based methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413758</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.4037-4040 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5413758 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | AdaBoost Boosting Clustering algorithms EM-like minimization Image analysis Image segmentation Labeling Layout Machine learning Machine learning algorithms Partitioning algorithms Spatial coherence unsupervised image segmentation |
title | An unsupervised image segmentation algorithm based on the machine learning of appropriate features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20unsupervised%20image%20segmentation%20algorithm%20based%20on%20the%20machine%20learning%20of%20appropriate%20features&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Sang%20Hak%20Lee&rft.date=2009-11&rft.spage=4037&rft.epage=4040&rft.pages=4037-4040&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413758&rft_dat=%3Cieee_6IE%3E5413758%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413758&rfr_iscdi=true |