A hybrid model for digital camera source identification

Digital forensics has lately become one of the very important applications to identify the characteristics and the originality of the digital devices. This study has focused on analyzing the relationship between digital cameras and the images. In conjunction with image processing techniques and data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Min-Jen Tsai, Cheng-Sheng Wang, Jung Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2904
container_issue
container_start_page 2901
container_title
container_volume
creator Min-Jen Tsai
Cheng-Sheng Wang
Jung Liu
description Digital forensics has lately become one of the very important applications to identify the characteristics and the originality of the digital devices. This study has focused on analyzing the relationship between digital cameras and the images. In conjunction with image processing techniques and data exploration methods, it calculates the characteristic values of the images taken by different cameras. Training and categorization are conducted through the support vector machines for identifying the camera source of the images. Based on the fact that the internal imaging algorithms of a camera are different from one manufacturer to another, this method computes the hidden characteristics of the images. The result of experiments shows the proposed approach can obtains 94.95% identification rate when images are taken from 20 different cameras.
doi_str_mv 10.1109/ICIP.2009.5413414
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5413414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5413414</ieee_id><sourcerecordid>5413414</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-26f6e9b392807520ce34811e5318ae348e19bf9ba655464e972ac9c7b098602e3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_MNY-gLiZF0i8d_5nWYLVQEEXui6TyY2OpI1M4qJvr2I3rs6BDw58h7EbhAoR_F1TN8-VAPCVVigVqhO29NahEkppozWcskJIh6XTyp_9Y9KcswK1EKVyDi7Z1TR9AAhAiQWzK_5-aHPq-G7saOD9mHmX3tIcBh7DjnLg0_iVI_HU0X5OfYphTuP-ml30YZhoecwFe13fv9SP5ebpoalXmzKh1XMpTG_It9ILB1YLiCSVQyQt0YXfTujb3rfhR0EZRd6KEH20LXhnQJBcsNu_3URE28-cdiEftscP5DdypEmq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid model for digital camera source identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Min-Jen Tsai ; Cheng-Sheng Wang ; Jung Liu</creator><creatorcontrib>Min-Jen Tsai ; Cheng-Sheng Wang ; Jung Liu</creatorcontrib><description>Digital forensics has lately become one of the very important applications to identify the characteristics and the originality of the digital devices. This study has focused on analyzing the relationship between digital cameras and the images. In conjunction with image processing techniques and data exploration methods, it calculates the characteristic values of the images taken by different cameras. Training and categorization are conducted through the support vector machines for identifying the camera source of the images. Based on the fact that the internal imaging algorithms of a camera are different from one manufacturer to another, this method computes the hidden characteristics of the images. The result of experiments shows the proposed approach can obtains 94.95% identification rate when images are taken from 20 different cameras.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424456536</identifier><identifier>ISBN: 1424456533</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424456550</identifier><identifier>EISBN: 9781424456543</identifier><identifier>EISBN: 142445655X</identifier><identifier>EISBN: 1424456541</identifier><identifier>DOI: 10.1109/ICIP.2009.5413414</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biosensors ; Digital cameras ; Digital forensics ; Fingerprint recognition ; Hardware ; Image quality ; Image quality metrics ; Manufacturing ; Photo-response non-uniformity noise ; Sensor phenomena and characterization ; Support vector machines ; Watermarking</subject><ispartof>2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2901-2904</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5413414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5413414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Min-Jen Tsai</creatorcontrib><creatorcontrib>Cheng-Sheng Wang</creatorcontrib><creatorcontrib>Jung Liu</creatorcontrib><title>A hybrid model for digital camera source identification</title><title>2009 16th IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Digital forensics has lately become one of the very important applications to identify the characteristics and the originality of the digital devices. This study has focused on analyzing the relationship between digital cameras and the images. In conjunction with image processing techniques and data exploration methods, it calculates the characteristic values of the images taken by different cameras. Training and categorization are conducted through the support vector machines for identifying the camera source of the images. Based on the fact that the internal imaging algorithms of a camera are different from one manufacturer to another, this method computes the hidden characteristics of the images. The result of experiments shows the proposed approach can obtains 94.95% identification rate when images are taken from 20 different cameras.</description><subject>Biosensors</subject><subject>Digital cameras</subject><subject>Digital forensics</subject><subject>Fingerprint recognition</subject><subject>Hardware</subject><subject>Image quality</subject><subject>Image quality metrics</subject><subject>Manufacturing</subject><subject>Photo-response non-uniformity noise</subject><subject>Sensor phenomena and characterization</subject><subject>Support vector machines</subject><subject>Watermarking</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424456536</isbn><isbn>1424456533</isbn><isbn>9781424456550</isbn><isbn>9781424456543</isbn><isbn>142445655X</isbn><isbn>1424456541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcc_MNY-gLiZF0i8d_5nWYLVQEEXui6TyY2OpI1M4qJvr2I3rs6BDw58h7EbhAoR_F1TN8-VAPCVVigVqhO29NahEkppozWcskJIh6XTyp_9Y9KcswK1EKVyDi7Z1TR9AAhAiQWzK_5-aHPq-G7saOD9mHmX3tIcBh7DjnLg0_iVI_HU0X5OfYphTuP-ml30YZhoecwFe13fv9SP5ebpoalXmzKh1XMpTG_It9ILB1YLiCSVQyQt0YXfTujb3rfhR0EZRd6KEH20LXhnQJBcsNu_3URE28-cdiEftscP5DdypEmq</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Min-Jen Tsai</creator><creator>Cheng-Sheng Wang</creator><creator>Jung Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>A hybrid model for digital camera source identification</title><author>Min-Jen Tsai ; Cheng-Sheng Wang ; Jung Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-26f6e9b392807520ce34811e5318ae348e19bf9ba655464e972ac9c7b098602e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biosensors</topic><topic>Digital cameras</topic><topic>Digital forensics</topic><topic>Fingerprint recognition</topic><topic>Hardware</topic><topic>Image quality</topic><topic>Image quality metrics</topic><topic>Manufacturing</topic><topic>Photo-response non-uniformity noise</topic><topic>Sensor phenomena and characterization</topic><topic>Support vector machines</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Min-Jen Tsai</creatorcontrib><creatorcontrib>Cheng-Sheng Wang</creatorcontrib><creatorcontrib>Jung Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Min-Jen Tsai</au><au>Cheng-Sheng Wang</au><au>Jung Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid model for digital camera source identification</atitle><btitle>2009 16th IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2009-11</date><risdate>2009</risdate><spage>2901</spage><epage>2904</epage><pages>2901-2904</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424456536</isbn><isbn>1424456533</isbn><eisbn>9781424456550</eisbn><eisbn>9781424456543</eisbn><eisbn>142445655X</eisbn><eisbn>1424456541</eisbn><abstract>Digital forensics has lately become one of the very important applications to identify the characteristics and the originality of the digital devices. This study has focused on analyzing the relationship between digital cameras and the images. In conjunction with image processing techniques and data exploration methods, it calculates the characteristic values of the images taken by different cameras. Training and categorization are conducted through the support vector machines for identifying the camera source of the images. Based on the fact that the internal imaging algorithms of a camera are different from one manufacturer to another, this method computes the hidden characteristics of the images. The result of experiments shows the proposed approach can obtains 94.95% identification rate when images are taken from 20 different cameras.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2009.5413414</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, p.2901-2904
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5413414
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biosensors
Digital cameras
Digital forensics
Fingerprint recognition
Hardware
Image quality
Image quality metrics
Manufacturing
Photo-response non-uniformity noise
Sensor phenomena and characterization
Support vector machines
Watermarking
title A hybrid model for digital camera source identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20model%20for%20digital%20camera%20source%20identification&rft.btitle=2009%2016th%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Min-Jen%20Tsai&rft.date=2009-11&rft.spage=2901&rft.epage=2904&rft.pages=2901-2904&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424456536&rft.isbn_list=1424456533&rft_id=info:doi/10.1109/ICIP.2009.5413414&rft_dat=%3Cieee_6IE%3E5413414%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456550&rft.eisbn_list=9781424456543&rft.eisbn_list=142445655X&rft.eisbn_list=1424456541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5413414&rfr_iscdi=true