An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model
In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1211 |
---|---|
container_issue | |
container_start_page | 1208 |
container_title | |
container_volume | |
creator | Jen-Pin Yang Yu-Ju Chen Chuo-Yean Chang Huang-Chu Huang Sung-Ning Tsai Rey-Chue Hwang |
description | In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy. |
doi_str_mv | 10.1109/ICICIC.2009.74 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5412210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5412210</ieee_id><sourcerecordid>5412210</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8bc46ebf4ddbb3b4eb2d46b62a71f7e8044166c9e7b5677f32a41fd302e534793</originalsourceid><addsrcrecordid>eNotjj1PwzAURY0QErR0ZWHxH0jxx7OdjCEKEKkUEBFiq-zkWQpKkyr2kn9PKrh3uMvR1SHkjrMt5yx7qIpzt4KxbGvggqyY0ZmSqZHpJVlxEABKgfy-JpsQftgSUBJMekPe84HmFS1D7I42jhMdPS17bOLUNbQYhzjZJtLCnmzTxZn6hSjy-ot-ziHikT7agC0dB_qx39PXscX-llx52wfc_O-a1E9lXbwku7fnqsh3SZexmKSuAY3OQ9s6Jx2gEy1op4U13BtMGQDXusnQOKWN8VJY4L6VTOBZPJNrcv932yHi4TQt9tN8UMCF4Ez-ApjNTNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</creator><creatorcontrib>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</creatorcontrib><description>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</description><identifier>ISBN: 142445543X</identifier><identifier>ISBN: 9781424455430</identifier><identifier>EISBN: 0769538738</identifier><identifier>EISBN: 1424455448</identifier><identifier>EISBN: 9781424455447</identifier><identifier>EISBN: 9780769538730</identifier><identifier>DOI: 10.1109/ICICIC.2009.74</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Contracts ; Costs ; Feedforward neural networks ; Neural networks ; Power demand ; Power system planning ; Quantum computing ; Signal processing</subject><ispartof>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1208-1211</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5412210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5412210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jen-Pin Yang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Sung-Ning Tsai</creatorcontrib><creatorcontrib>Rey-Chue Hwang</creatorcontrib><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><title>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</title><addtitle>ICICIC</addtitle><description>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</description><subject>Artificial intelligence</subject><subject>Contracts</subject><subject>Costs</subject><subject>Feedforward neural networks</subject><subject>Neural networks</subject><subject>Power demand</subject><subject>Power system planning</subject><subject>Quantum computing</subject><subject>Signal processing</subject><isbn>142445543X</isbn><isbn>9781424455430</isbn><isbn>0769538738</isbn><isbn>1424455448</isbn><isbn>9781424455447</isbn><isbn>9780769538730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAURY0QErR0ZWHxH0jxx7OdjCEKEKkUEBFiq-zkWQpKkyr2kn9PKrh3uMvR1SHkjrMt5yx7qIpzt4KxbGvggqyY0ZmSqZHpJVlxEABKgfy-JpsQftgSUBJMekPe84HmFS1D7I42jhMdPS17bOLUNbQYhzjZJtLCnmzTxZn6hSjy-ot-ziHikT7agC0dB_qx39PXscX-llx52wfc_O-a1E9lXbwku7fnqsh3SZexmKSuAY3OQ9s6Jx2gEy1op4U13BtMGQDXusnQOKWN8VJY4L6VTOBZPJNrcv932yHi4TQt9tN8UMCF4Ez-ApjNTNw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Jen-Pin Yang</creator><creator>Yu-Ju Chen</creator><creator>Chuo-Yean Chang</creator><creator>Huang-Chu Huang</creator><creator>Sung-Ning Tsai</creator><creator>Rey-Chue Hwang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><author>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8bc46ebf4ddbb3b4eb2d46b62a71f7e8044166c9e7b5677f32a41fd302e534793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Contracts</topic><topic>Costs</topic><topic>Feedforward neural networks</topic><topic>Neural networks</topic><topic>Power demand</topic><topic>Power system planning</topic><topic>Quantum computing</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jen-Pin Yang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Sung-Ning Tsai</creatorcontrib><creatorcontrib>Rey-Chue Hwang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jen-Pin Yang</au><au>Yu-Ju Chen</au><au>Chuo-Yean Chang</au><au>Huang-Chu Huang</au><au>Sung-Ning Tsai</au><au>Rey-Chue Hwang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</atitle><btitle>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</btitle><stitle>ICICIC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1208</spage><epage>1211</epage><pages>1208-1211</pages><isbn>142445543X</isbn><isbn>9781424455430</isbn><eisbn>0769538738</eisbn><eisbn>1424455448</eisbn><eisbn>9781424455447</eisbn><eisbn>9780769538730</eisbn><abstract>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICICIC.2009.74</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142445543X |
ispartof | 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1208-1211 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5412210 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Contracts Costs Feedforward neural networks Neural networks Power demand Power system planning Quantum computing Signal processing |
title | An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20AI%20Estimator%20of%20Electric%20Contract%20Capacity%20for%20CATV%20System%20Based%20on%20QNN%20Model&rft.btitle=2009%20Fourth%20International%20Conference%20on%20Innovative%20Computing,%20Information%20and%20Control%20(ICICIC)&rft.au=Jen-Pin%20Yang&rft.date=2009-12&rft.spage=1208&rft.epage=1211&rft.pages=1208-1211&rft.isbn=142445543X&rft.isbn_list=9781424455430&rft_id=info:doi/10.1109/ICICIC.2009.74&rft_dat=%3Cieee_6IE%3E5412210%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538738&rft.eisbn_list=1424455448&rft.eisbn_list=9781424455447&rft.eisbn_list=9780769538730&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5412210&rfr_iscdi=true |