An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model

In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jen-Pin Yang, Yu-Ju Chen, Chuo-Yean Chang, Huang-Chu Huang, Sung-Ning Tsai, Rey-Chue Hwang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1211
container_issue
container_start_page 1208
container_title
container_volume
creator Jen-Pin Yang
Yu-Ju Chen
Chuo-Yean Chang
Huang-Chu Huang
Sung-Ning Tsai
Rey-Chue Hwang
description In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.
doi_str_mv 10.1109/ICICIC.2009.74
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5412210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5412210</ieee_id><sourcerecordid>5412210</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8bc46ebf4ddbb3b4eb2d46b62a71f7e8044166c9e7b5677f32a41fd302e534793</originalsourceid><addsrcrecordid>eNotjj1PwzAURY0QErR0ZWHxH0jxx7OdjCEKEKkUEBFiq-zkWQpKkyr2kn9PKrh3uMvR1SHkjrMt5yx7qIpzt4KxbGvggqyY0ZmSqZHpJVlxEABKgfy-JpsQftgSUBJMekPe84HmFS1D7I42jhMdPS17bOLUNbQYhzjZJtLCnmzTxZn6hSjy-ot-ziHikT7agC0dB_qx39PXscX-llx52wfc_O-a1E9lXbwku7fnqsh3SZexmKSuAY3OQ9s6Jx2gEy1op4U13BtMGQDXusnQOKWN8VJY4L6VTOBZPJNrcv932yHi4TQt9tN8UMCF4Ez-ApjNTNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</creator><creatorcontrib>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</creatorcontrib><description>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</description><identifier>ISBN: 142445543X</identifier><identifier>ISBN: 9781424455430</identifier><identifier>EISBN: 0769538738</identifier><identifier>EISBN: 1424455448</identifier><identifier>EISBN: 9781424455447</identifier><identifier>EISBN: 9780769538730</identifier><identifier>DOI: 10.1109/ICICIC.2009.74</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Contracts ; Costs ; Feedforward neural networks ; Neural networks ; Power demand ; Power system planning ; Quantum computing ; Signal processing</subject><ispartof>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1208-1211</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5412210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5412210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jen-Pin Yang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Sung-Ning Tsai</creatorcontrib><creatorcontrib>Rey-Chue Hwang</creatorcontrib><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><title>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</title><addtitle>ICICIC</addtitle><description>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</description><subject>Artificial intelligence</subject><subject>Contracts</subject><subject>Costs</subject><subject>Feedforward neural networks</subject><subject>Neural networks</subject><subject>Power demand</subject><subject>Power system planning</subject><subject>Quantum computing</subject><subject>Signal processing</subject><isbn>142445543X</isbn><isbn>9781424455430</isbn><isbn>0769538738</isbn><isbn>1424455448</isbn><isbn>9781424455447</isbn><isbn>9780769538730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAURY0QErR0ZWHxH0jxx7OdjCEKEKkUEBFiq-zkWQpKkyr2kn9PKrh3uMvR1SHkjrMt5yx7qIpzt4KxbGvggqyY0ZmSqZHpJVlxEABKgfy-JpsQftgSUBJMekPe84HmFS1D7I42jhMdPS17bOLUNbQYhzjZJtLCnmzTxZn6hSjy-ot-ziHikT7agC0dB_qx39PXscX-llx52wfc_O-a1E9lXbwku7fnqsh3SZexmKSuAY3OQ9s6Jx2gEy1op4U13BtMGQDXusnQOKWN8VJY4L6VTOBZPJNrcv932yHi4TQt9tN8UMCF4Ez-ApjNTNw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Jen-Pin Yang</creator><creator>Yu-Ju Chen</creator><creator>Chuo-Yean Chang</creator><creator>Huang-Chu Huang</creator><creator>Sung-Ning Tsai</creator><creator>Rey-Chue Hwang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</title><author>Jen-Pin Yang ; Yu-Ju Chen ; Chuo-Yean Chang ; Huang-Chu Huang ; Sung-Ning Tsai ; Rey-Chue Hwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8bc46ebf4ddbb3b4eb2d46b62a71f7e8044166c9e7b5677f32a41fd302e534793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Contracts</topic><topic>Costs</topic><topic>Feedforward neural networks</topic><topic>Neural networks</topic><topic>Power demand</topic><topic>Power system planning</topic><topic>Quantum computing</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jen-Pin Yang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Sung-Ning Tsai</creatorcontrib><creatorcontrib>Rey-Chue Hwang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jen-Pin Yang</au><au>Yu-Ju Chen</au><au>Chuo-Yean Chang</au><au>Huang-Chu Huang</au><au>Sung-Ning Tsai</au><au>Rey-Chue Hwang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model</atitle><btitle>2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC)</btitle><stitle>ICICIC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1208</spage><epage>1211</epage><pages>1208-1211</pages><isbn>142445543X</isbn><isbn>9781424455430</isbn><eisbn>0769538738</eisbn><eisbn>1424455448</eisbn><eisbn>9781424455447</eisbn><eisbn>9780769538730</eisbn><abstract>In this paper, an AI estimator of electric contract capacity for community antenna television system (CATV) based on quantum neural network (QNN) is proposed. This intelligent estimator not only can make CATV company have a good planning on the development of TV network system and power demand, but also can greatly reduce the company's running cost. In this AI estimator, the neural model was used to execute the estimation of power demand. Due to the powerful learning capability of neural network, the nonlinear and complex relationships between power demand and its possible influencing factors could be automatically developed. Thus, such a well-trained neural model could be employed into the electricity demand estimation with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICICIC.2009.74</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142445543X
ispartof 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 2009, p.1208-1211
issn
language eng
recordid cdi_ieee_primary_5412210
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Contracts
Costs
Feedforward neural networks
Neural networks
Power demand
Power system planning
Quantum computing
Signal processing
title An AI Estimator of Electric Contract Capacity for CATV System Based on QNN Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20AI%20Estimator%20of%20Electric%20Contract%20Capacity%20for%20CATV%20System%20Based%20on%20QNN%20Model&rft.btitle=2009%20Fourth%20International%20Conference%20on%20Innovative%20Computing,%20Information%20and%20Control%20(ICICIC)&rft.au=Jen-Pin%20Yang&rft.date=2009-12&rft.spage=1208&rft.epage=1211&rft.pages=1208-1211&rft.isbn=142445543X&rft.isbn_list=9781424455430&rft_id=info:doi/10.1109/ICICIC.2009.74&rft_dat=%3Cieee_6IE%3E5412210%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538738&rft.eisbn_list=1424455448&rft.eisbn_list=9781424455447&rft.eisbn_list=9780769538730&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5412210&rfr_iscdi=true