Application of wavelet de-noising to signal demodulation

We present the application of wavelet-based de-noising techniques to the demodulation of digital communication signals. These techniques are related to those originally devised by Donoho and Johnstone (see Biometrika, v.81, p.455, 1994, and IEEE Trans. Info. Theory, vol.41, p.613, 1995) for minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bruce, A.G., Hong-Ye Gao, Mulligan, J.J., Satorius, E.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1146 vol.2
container_issue
container_start_page 1142
container_title
container_volume 2
creator Bruce, A.G.
Hong-Ye Gao
Mulligan, J.J.
Satorius, E.H.
description We present the application of wavelet-based de-noising techniques to the demodulation of digital communication signals. These techniques are related to those originally devised by Donoho and Johnstone (see Biometrika, v.81, p.455, 1994, and IEEE Trans. Info. Theory, vol.41, p.613, 1995) for minimum L/sub 2/-risk signal reconstruction. The important minimax property of wavelet de-noising filters yields significant noise reduction while retaining the essential signal features. However, the two problems are quite different, i.e., the objective is not signal reconstruction but rather minimizing bit error rate. This generally results in different design rules for optimizing performance. We show that wavelet de-noising can be effectively used for data demodulation and we propose simple design rules for its implementation.
doi_str_mv 10.1109/ACSSC.1995.540878
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_540878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>540878</ieee_id><sourcerecordid>540878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-1b5cd47b50ab202b384dca8c31dbdb578b5d6111e708781987eaec00a7a96ecf3</originalsourceid><addsrcrecordid>eNotj9tKw0AURQcvYKj5AH3KD0w8J5OZOfMYglqh4EP7XuaWMpImoYmKf--lPi3YLDYsxu4QSkQwD0273bYlGiNLWQNpumBZJbXilQBxyXKjCQhJaaGhumIZgiSuhBE3LJ_nNwBAELUyJmPUTFOfvF3SOBRjV3zaj9jHpQiRD2Oa03AolrGY02Gw_c94HMN7_yffsuvO9nPM_7liu6fHXbvmm9fnl7bZ8ER64eikD7V2EqyroHKC6uAteYHBBSc1ORkUIkb9m4GGdLTRA1htjYq-Eyt2f75NMcb9dEpHe_ran6vFN66USYE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of wavelet de-noising to signal demodulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bruce, A.G. ; Hong-Ye Gao ; Mulligan, J.J. ; Satorius, E.H.</creator><creatorcontrib>Bruce, A.G. ; Hong-Ye Gao ; Mulligan, J.J. ; Satorius, E.H.</creatorcontrib><description>We present the application of wavelet-based de-noising techniques to the demodulation of digital communication signals. These techniques are related to those originally devised by Donoho and Johnstone (see Biometrika, v.81, p.455, 1994, and IEEE Trans. Info. Theory, vol.41, p.613, 1995) for minimum L/sub 2/-risk signal reconstruction. The important minimax property of wavelet de-noising filters yields significant noise reduction while retaining the essential signal features. However, the two problems are quite different, i.e., the objective is not signal reconstruction but rather minimizing bit error rate. This generally results in different design rules for optimizing performance. We show that wavelet de-noising can be effectively used for data demodulation and we propose simple design rules for its implementation.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818673702</identifier><identifier>ISBN: 0818673702</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1995.540878</identifier><language>eng</language><publisher>IEEE</publisher><subject>AWGN ; Bit error rate ; Demodulation ; Noise reduction ; Sampling methods ; Signal reconstruction ; Timing ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms</subject><ispartof>Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995, Vol.2, p.1142-1146 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/540878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/540878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bruce, A.G.</creatorcontrib><creatorcontrib>Hong-Ye Gao</creatorcontrib><creatorcontrib>Mulligan, J.J.</creatorcontrib><creatorcontrib>Satorius, E.H.</creatorcontrib><title>Application of wavelet de-noising to signal demodulation</title><title>Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We present the application of wavelet-based de-noising techniques to the demodulation of digital communication signals. These techniques are related to those originally devised by Donoho and Johnstone (see Biometrika, v.81, p.455, 1994, and IEEE Trans. Info. Theory, vol.41, p.613, 1995) for minimum L/sub 2/-risk signal reconstruction. The important minimax property of wavelet de-noising filters yields significant noise reduction while retaining the essential signal features. However, the two problems are quite different, i.e., the objective is not signal reconstruction but rather minimizing bit error rate. This generally results in different design rules for optimizing performance. We show that wavelet de-noising can be effectively used for data demodulation and we propose simple design rules for its implementation.</description><subject>AWGN</subject><subject>Bit error rate</subject><subject>Demodulation</subject><subject>Noise reduction</subject><subject>Sampling methods</subject><subject>Signal reconstruction</subject><subject>Timing</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818673702</isbn><isbn>0818673702</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKw0AURQcvYKj5AH3KD0w8J5OZOfMYglqh4EP7XuaWMpImoYmKf--lPi3YLDYsxu4QSkQwD0273bYlGiNLWQNpumBZJbXilQBxyXKjCQhJaaGhumIZgiSuhBE3LJ_nNwBAELUyJmPUTFOfvF3SOBRjV3zaj9jHpQiRD2Oa03AolrGY02Gw_c94HMN7_yffsuvO9nPM_7liu6fHXbvmm9fnl7bZ8ER64eikD7V2EqyroHKC6uAteYHBBSc1ORkUIkb9m4GGdLTRA1htjYq-Eyt2f75NMcb9dEpHe_ran6vFN66USYE</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Bruce, A.G.</creator><creator>Hong-Ye Gao</creator><creator>Mulligan, J.J.</creator><creator>Satorius, E.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Application of wavelet de-noising to signal demodulation</title><author>Bruce, A.G. ; Hong-Ye Gao ; Mulligan, J.J. ; Satorius, E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-1b5cd47b50ab202b384dca8c31dbdb578b5d6111e708781987eaec00a7a96ecf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>AWGN</topic><topic>Bit error rate</topic><topic>Demodulation</topic><topic>Noise reduction</topic><topic>Sampling methods</topic><topic>Signal reconstruction</topic><topic>Timing</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruce, A.G.</creatorcontrib><creatorcontrib>Hong-Ye Gao</creatorcontrib><creatorcontrib>Mulligan, J.J.</creatorcontrib><creatorcontrib>Satorius, E.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bruce, A.G.</au><au>Hong-Ye Gao</au><au>Mulligan, J.J.</au><au>Satorius, E.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of wavelet de-noising to signal demodulation</atitle><btitle>Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>1142</spage><epage>1146 vol.2</epage><pages>1142-1146 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818673702</isbn><isbn>0818673702</isbn><abstract>We present the application of wavelet-based de-noising techniques to the demodulation of digital communication signals. These techniques are related to those originally devised by Donoho and Johnstone (see Biometrika, v.81, p.455, 1994, and IEEE Trans. Info. Theory, vol.41, p.613, 1995) for minimum L/sub 2/-risk signal reconstruction. The important minimax property of wavelet de-noising filters yields significant noise reduction while retaining the essential signal features. However, the two problems are quite different, i.e., the objective is not signal reconstruction but rather minimizing bit error rate. This generally results in different design rules for optimizing performance. We show that wavelet de-noising can be effectively used for data demodulation and we propose simple design rules for its implementation.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1995.540878</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995, Vol.2, p.1142-1146 vol.2
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_540878
source IEEE Electronic Library (IEL) Conference Proceedings
subjects AWGN
Bit error rate
Demodulation
Noise reduction
Sampling methods
Signal reconstruction
Timing
Wavelet coefficients
Wavelet domain
Wavelet transforms
title Application of wavelet de-noising to signal demodulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20wavelet%20de-noising%20to%20signal%20demodulation&rft.btitle=Conference%20Record%20of%20The%20Twenty-Ninth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Bruce,%20A.G.&rft.date=1995&rft.volume=2&rft.spage=1142&rft.epage=1146%20vol.2&rft.pages=1142-1146%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818673702&rft.isbn_list=0818673702&rft_id=info:doi/10.1109/ACSSC.1995.540878&rft_dat=%3Cieee_6IE%3E540878%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=540878&rfr_iscdi=true