User-controlled physics-based animation for articulated figures
We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 16 |
container_title | |
container_volume | |
creator | Kokkevis, E. Metaxas, D. Badler, N.I. |
description | We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters. |
doi_str_mv | 10.1109/CA.1996.540484 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_540484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>540484</ieee_id><sourcerecordid>540484</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1294-b7e5dd8a14832b7f3b481035f4e1586b237906e2ff30826095177279bed70b503</originalsourceid><addsrcrecordid>eNotj8tqwzAUREUfUDfNtouu8gNy79XDulqVEPqCQDfNOki21Kq4dpCcRf6-hnQ1DDMMZxi7R6gRwT5u1jVa29RagSJ1wSohjeFaCXXJltYQEFJjNBFesQqBDJ9r6obdlvIDAFobXbGnXQmZt-Mw5bHvQ7c6fJ9Kagv3rszODenXTWkcVnHMK5en1B57N81JTF_HHModu46uL2H5rwu2e3n-3Lzx7cfr-2a95QmFVdyboLuOHCqSwpsovSIEqaMKqKnxM7qFJogYJZBowGo0RhjrQ2fAa5AL9nDeTSGE_SHPWPm0P1-Xf6KySWU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>User-controlled physics-based animation for articulated figures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</creator><creatorcontrib>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</creatorcontrib><description>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</description><identifier>ISSN: 1087-4844</identifier><identifier>ISBN: 9780818675881</identifier><identifier>ISBN: 0818675888</identifier><identifier>EISSN: 2377-5424</identifier><identifier>DOI: 10.1109/CA.1996.540484</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animation ; Control systems ; Feedback control ; Force control ; Kinematics ; Motion control ; Optimal control ; Physics ; Robust control ; Torque control</subject><ispartof>Proceedings Computer Animation '96, 1996, p.16-26</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/540484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/540484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kokkevis, E.</creatorcontrib><creatorcontrib>Metaxas, D.</creatorcontrib><creatorcontrib>Badler, N.I.</creatorcontrib><title>User-controlled physics-based animation for articulated figures</title><title>Proceedings Computer Animation '96</title><addtitle>CA</addtitle><description>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</description><subject>Animation</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>Force control</subject><subject>Kinematics</subject><subject>Motion control</subject><subject>Optimal control</subject><subject>Physics</subject><subject>Robust control</subject><subject>Torque control</subject><issn>1087-4844</issn><issn>2377-5424</issn><isbn>9780818675881</isbn><isbn>0818675888</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAUREUfUDfNtouu8gNy79XDulqVEPqCQDfNOki21Kq4dpCcRf6-hnQ1DDMMZxi7R6gRwT5u1jVa29RagSJ1wSohjeFaCXXJltYQEFJjNBFesQqBDJ9r6obdlvIDAFobXbGnXQmZt-Mw5bHvQ7c6fJ9Kagv3rszODenXTWkcVnHMK5en1B57N81JTF_HHModu46uL2H5rwu2e3n-3Lzx7cfr-2a95QmFVdyboLuOHCqSwpsovSIEqaMKqKnxM7qFJogYJZBowGo0RhjrQ2fAa5AL9nDeTSGE_SHPWPm0P1-Xf6KySWU</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Kokkevis, E.</creator><creator>Metaxas, D.</creator><creator>Badler, N.I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>User-controlled physics-based animation for articulated figures</title><author>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1294-b7e5dd8a14832b7f3b481035f4e1586b237906e2ff30826095177279bed70b503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animation</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>Force control</topic><topic>Kinematics</topic><topic>Motion control</topic><topic>Optimal control</topic><topic>Physics</topic><topic>Robust control</topic><topic>Torque control</topic><toplevel>online_resources</toplevel><creatorcontrib>Kokkevis, E.</creatorcontrib><creatorcontrib>Metaxas, D.</creatorcontrib><creatorcontrib>Badler, N.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kokkevis, E.</au><au>Metaxas, D.</au><au>Badler, N.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>User-controlled physics-based animation for articulated figures</atitle><btitle>Proceedings Computer Animation '96</btitle><stitle>CA</stitle><date>1996</date><risdate>1996</risdate><spage>16</spage><epage>26</epage><pages>16-26</pages><issn>1087-4844</issn><eissn>2377-5424</eissn><isbn>9780818675881</isbn><isbn>0818675888</isbn><abstract>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</abstract><pub>IEEE</pub><doi>10.1109/CA.1996.540484</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1087-4844 |
ispartof | Proceedings Computer Animation '96, 1996, p.16-26 |
issn | 1087-4844 2377-5424 |
language | eng |
recordid | cdi_ieee_primary_540484 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Animation Control systems Feedback control Force control Kinematics Motion control Optimal control Physics Robust control Torque control |
title | User-controlled physics-based animation for articulated figures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=User-controlled%20physics-based%20animation%20for%20articulated%20figures&rft.btitle=Proceedings%20Computer%20Animation%20'96&rft.au=Kokkevis,%20E.&rft.date=1996&rft.spage=16&rft.epage=26&rft.pages=16-26&rft.issn=1087-4844&rft.eissn=2377-5424&rft.isbn=9780818675881&rft.isbn_list=0818675888&rft_id=info:doi/10.1109/CA.1996.540484&rft_dat=%3Cieee_6IE%3E540484%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=540484&rfr_iscdi=true |