User-controlled physics-based animation for articulated figures

We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kokkevis, E., Metaxas, D., Badler, N.I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 16
container_title
container_volume
creator Kokkevis, E.
Metaxas, D.
Badler, N.I.
description We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.
doi_str_mv 10.1109/CA.1996.540484
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_540484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>540484</ieee_id><sourcerecordid>540484</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1294-b7e5dd8a14832b7f3b481035f4e1586b237906e2ff30826095177279bed70b503</originalsourceid><addsrcrecordid>eNotj8tqwzAUREUfUDfNtouu8gNy79XDulqVEPqCQDfNOki21Kq4dpCcRf6-hnQ1DDMMZxi7R6gRwT5u1jVa29RagSJ1wSohjeFaCXXJltYQEFJjNBFesQqBDJ9r6obdlvIDAFobXbGnXQmZt-Mw5bHvQ7c6fJ9Kagv3rszODenXTWkcVnHMK5en1B57N81JTF_HHModu46uL2H5rwu2e3n-3Lzx7cfr-2a95QmFVdyboLuOHCqSwpsovSIEqaMKqKnxM7qFJogYJZBowGo0RhjrQ2fAa5AL9nDeTSGE_SHPWPm0P1-Xf6KySWU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>User-controlled physics-based animation for articulated figures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</creator><creatorcontrib>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</creatorcontrib><description>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</description><identifier>ISSN: 1087-4844</identifier><identifier>ISBN: 9780818675881</identifier><identifier>ISBN: 0818675888</identifier><identifier>EISSN: 2377-5424</identifier><identifier>DOI: 10.1109/CA.1996.540484</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animation ; Control systems ; Feedback control ; Force control ; Kinematics ; Motion control ; Optimal control ; Physics ; Robust control ; Torque control</subject><ispartof>Proceedings Computer Animation '96, 1996, p.16-26</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/540484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/540484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kokkevis, E.</creatorcontrib><creatorcontrib>Metaxas, D.</creatorcontrib><creatorcontrib>Badler, N.I.</creatorcontrib><title>User-controlled physics-based animation for articulated figures</title><title>Proceedings Computer Animation '96</title><addtitle>CA</addtitle><description>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</description><subject>Animation</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>Force control</subject><subject>Kinematics</subject><subject>Motion control</subject><subject>Optimal control</subject><subject>Physics</subject><subject>Robust control</subject><subject>Torque control</subject><issn>1087-4844</issn><issn>2377-5424</issn><isbn>9780818675881</isbn><isbn>0818675888</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAUREUfUDfNtouu8gNy79XDulqVEPqCQDfNOki21Kq4dpCcRf6-hnQ1DDMMZxi7R6gRwT5u1jVa29RagSJ1wSohjeFaCXXJltYQEFJjNBFesQqBDJ9r6obdlvIDAFobXbGnXQmZt-Mw5bHvQ7c6fJ9Kagv3rszODenXTWkcVnHMK5en1B57N81JTF_HHModu46uL2H5rwu2e3n-3Lzx7cfr-2a95QmFVdyboLuOHCqSwpsovSIEqaMKqKnxM7qFJogYJZBowGo0RhjrQ2fAa5AL9nDeTSGE_SHPWPm0P1-Xf6KySWU</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Kokkevis, E.</creator><creator>Metaxas, D.</creator><creator>Badler, N.I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>User-controlled physics-based animation for articulated figures</title><author>Kokkevis, E. ; Metaxas, D. ; Badler, N.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1294-b7e5dd8a14832b7f3b481035f4e1586b237906e2ff30826095177279bed70b503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animation</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>Force control</topic><topic>Kinematics</topic><topic>Motion control</topic><topic>Optimal control</topic><topic>Physics</topic><topic>Robust control</topic><topic>Torque control</topic><toplevel>online_resources</toplevel><creatorcontrib>Kokkevis, E.</creatorcontrib><creatorcontrib>Metaxas, D.</creatorcontrib><creatorcontrib>Badler, N.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kokkevis, E.</au><au>Metaxas, D.</au><au>Badler, N.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>User-controlled physics-based animation for articulated figures</atitle><btitle>Proceedings Computer Animation '96</btitle><stitle>CA</stitle><date>1996</date><risdate>1996</risdate><spage>16</spage><epage>26</epage><pages>16-26</pages><issn>1087-4844</issn><eissn>2377-5424</eissn><isbn>9780818675881</isbn><isbn>0818675888</isbn><abstract>We present a physics based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator we introduce a robust feedback control scheme and a fast two stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user controlled motion at interactive rates. We require minimal user involvement in specifying non intuitive parameters.</abstract><pub>IEEE</pub><doi>10.1109/CA.1996.540484</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1087-4844
ispartof Proceedings Computer Animation '96, 1996, p.16-26
issn 1087-4844
2377-5424
language eng
recordid cdi_ieee_primary_540484
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animation
Control systems
Feedback control
Force control
Kinematics
Motion control
Optimal control
Physics
Robust control
Torque control
title User-controlled physics-based animation for articulated figures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=User-controlled%20physics-based%20animation%20for%20articulated%20figures&rft.btitle=Proceedings%20Computer%20Animation%20'96&rft.au=Kokkevis,%20E.&rft.date=1996&rft.spage=16&rft.epage=26&rft.pages=16-26&rft.issn=1087-4844&rft.eissn=2377-5424&rft.isbn=9780818675881&rft.isbn_list=0818675888&rft_id=info:doi/10.1109/CA.1996.540484&rft_dat=%3Cieee_6IE%3E540484%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=540484&rfr_iscdi=true