Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks
Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2010-02, Vol.9 (2), p.791-801 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801 |
---|---|
container_issue | 2 |
container_start_page | 791 |
container_title | IEEE transactions on wireless communications |
container_volume | 9 |
creator | Tze-ping Low Man-on Pun Hong, Y.-W.P. Kuo, C.-C.J. |
description | Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling. |
doi_str_mv | 10.1109/TWC.2010.02.090387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5403559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5403559</ieee_id><sourcerecordid>2289719601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</originalsourceid><addsrcrecordid>eNqFkU1v1EAMhiNEJZaWPwCXCAlBD1k8M_F8HNEKKFKrlUoRx9EkcWCWbBJmklbw65loV3vg0pNt-fEr22-WvWSwZgzM-7vvmzWHVAFfgwGh1ZNsxRB1wXmpny65kAXjSj7Lnse4A2BKIq6y2-04-b3_S00-jOMQprn3cfJ1vp-7FFyc8lj_pGbufP8jf7e9-XqZD_cU8gcfqKMY85q6bu5cyHuaHobwK15kZ63rIr04xvPs26ePd5ur4nr7-cvmw3VRl0ZPhUInWkVONE6YEpEbkJqXAtLGBnUjkZwhXlWgKPVMhUZrXrWVVAisqcR59vagO4bh90xxsnsfl21cT8McrV441Kp8lFTpOWV6Dk_k6__I3TCHPp1hNUoJ3HBMED9AdRhiDNTaMfi9C38sA7vYYZMddrHDArcHO9LQm6Oyi7Xr2uD62sfTJOdCA5OL-KsD54no1MYSBKIR_wBBBJI_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856602925</pqid></control><display><type>article</type><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><source>IEEE Xplore</source><creator>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</creator><creatorcontrib>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</creatorcontrib><description>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2010.02.090387</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Base stations ; Cellular ; Channels ; Coding, codes ; Computer simulation ; Decoding ; Delay ; Delay effects ; Delay systems ; Equipments and installations ; Exact sciences and technology ; extreme value theory ; Fading ; Gain ; Information, signal and communications theory ; Land mobile radio cellular systems ; Mobile radiocommunication systems ; Multicast ; multicast gain ; multiuser diversity ; Networks ; Opportunistic scheduling ; Performance gain ; Radiocommunications ; Scheduling ; Signal and communications theory ; Statistics ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission ; Transmission and modulation (techniques and equipments) ; Unicast</subject><ispartof>IEEE transactions on wireless communications, 2010-02, Vol.9 (2), p.791-801</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</citedby><cites>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5403559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5403559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22380165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tze-ping Low</creatorcontrib><creatorcontrib>Man-on Pun</creatorcontrib><creatorcontrib>Hong, Y.-W.P.</creatorcontrib><creatorcontrib>Kuo, C.-C.J.</creatorcontrib><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</description><subject>Applied sciences</subject><subject>Base stations</subject><subject>Cellular</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Computer simulation</subject><subject>Decoding</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>extreme value theory</subject><subject>Fading</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Land mobile radio cellular systems</subject><subject>Mobile radiocommunication systems</subject><subject>Multicast</subject><subject>multicast gain</subject><subject>multiuser diversity</subject><subject>Networks</subject><subject>Opportunistic scheduling</subject><subject>Performance gain</subject><subject>Radiocommunications</subject><subject>Scheduling</subject><subject>Signal and communications theory</subject><subject>Statistics</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Unicast</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1EAMhiNEJZaWPwCXCAlBD1k8M_F8HNEKKFKrlUoRx9EkcWCWbBJmklbw65loV3vg0pNt-fEr22-WvWSwZgzM-7vvmzWHVAFfgwGh1ZNsxRB1wXmpny65kAXjSj7Lnse4A2BKIq6y2-04-b3_S00-jOMQprn3cfJ1vp-7FFyc8lj_pGbufP8jf7e9-XqZD_cU8gcfqKMY85q6bu5cyHuaHobwK15kZ63rIr04xvPs26ePd5ur4nr7-cvmw3VRl0ZPhUInWkVONE6YEpEbkJqXAtLGBnUjkZwhXlWgKPVMhUZrXrWVVAisqcR59vagO4bh90xxsnsfl21cT8McrV441Kp8lFTpOWV6Dk_k6__I3TCHPp1hNUoJ3HBMED9AdRhiDNTaMfi9C38sA7vYYZMddrHDArcHO9LQm6Oyi7Xr2uD62sfTJOdCA5OL-KsD54no1MYSBKIR_wBBBJI_</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Tze-ping Low</creator><creator>Man-on Pun</creator><creator>Hong, Y.-W.P.</creator><creator>Kuo, C.-C.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><author>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Base stations</topic><topic>Cellular</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Computer simulation</topic><topic>Decoding</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>extreme value theory</topic><topic>Fading</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Land mobile radio cellular systems</topic><topic>Mobile radiocommunication systems</topic><topic>Multicast</topic><topic>multicast gain</topic><topic>multiuser diversity</topic><topic>Networks</topic><topic>Opportunistic scheduling</topic><topic>Performance gain</topic><topic>Radiocommunications</topic><topic>Scheduling</topic><topic>Signal and communications theory</topic><topic>Statistics</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Unicast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tze-ping Low</creatorcontrib><creatorcontrib>Man-on Pun</creatorcontrib><creatorcontrib>Hong, Y.-W.P.</creatorcontrib><creatorcontrib>Kuo, C.-C.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tze-ping Low</au><au>Man-on Pun</au><au>Hong, Y.-W.P.</au><au>Kuo, C.-C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>9</volume><issue>2</issue><spage>791</spage><epage>801</epage><pages>791-801</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2010.02.090387</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2010-02, Vol.9 (2), p.791-801 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_5403559 |
source | IEEE Xplore |
subjects | Applied sciences Base stations Cellular Channels Coding, codes Computer simulation Decoding Delay Delay effects Delay systems Equipments and installations Exact sciences and technology extreme value theory Fading Gain Information, signal and communications theory Land mobile radio cellular systems Mobile radiocommunication systems Multicast multicast gain multiuser diversity Networks Opportunistic scheduling Performance gain Radiocommunications Scheduling Signal and communications theory Statistics Studies Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission Transmission and modulation (techniques and equipments) Unicast |
title | Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20opportunistic%20multicast%20scheduling%20(OMS)%20over%20wireless%20cellular%20networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Tze-ping%20Low&rft.date=2010-02-01&rft.volume=9&rft.issue=2&rft.spage=791&rft.epage=801&rft.pages=791-801&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2010.02.090387&rft_dat=%3Cproquest_RIE%3E2289719601%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856602925&rft_id=info:pmid/&rft_ieee_id=5403559&rfr_iscdi=true |