Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks

Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2010-02, Vol.9 (2), p.791-801
Hauptverfasser: Tze-ping Low, Man-on Pun, Hong, Y.-W.P., Kuo, C.-C.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 2
container_start_page 791
container_title IEEE transactions on wireless communications
container_volume 9
creator Tze-ping Low
Man-on Pun
Hong, Y.-W.P.
Kuo, C.-C.J.
description Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.
doi_str_mv 10.1109/TWC.2010.02.090387
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5403559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5403559</ieee_id><sourcerecordid>2289719601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</originalsourceid><addsrcrecordid>eNqFkU1v1EAMhiNEJZaWPwCXCAlBD1k8M_F8HNEKKFKrlUoRx9EkcWCWbBJmklbw65loV3vg0pNt-fEr22-WvWSwZgzM-7vvmzWHVAFfgwGh1ZNsxRB1wXmpny65kAXjSj7Lnse4A2BKIq6y2-04-b3_S00-jOMQprn3cfJ1vp-7FFyc8lj_pGbufP8jf7e9-XqZD_cU8gcfqKMY85q6bu5cyHuaHobwK15kZ63rIr04xvPs26ePd5ur4nr7-cvmw3VRl0ZPhUInWkVONE6YEpEbkJqXAtLGBnUjkZwhXlWgKPVMhUZrXrWVVAisqcR59vagO4bh90xxsnsfl21cT8McrV441Kp8lFTpOWV6Dk_k6__I3TCHPp1hNUoJ3HBMED9AdRhiDNTaMfi9C38sA7vYYZMddrHDArcHO9LQm6Oyi7Xr2uD62sfTJOdCA5OL-KsD54no1MYSBKIR_wBBBJI_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856602925</pqid></control><display><type>article</type><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><source>IEEE Xplore</source><creator>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</creator><creatorcontrib>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</creatorcontrib><description>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2010.02.090387</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Base stations ; Cellular ; Channels ; Coding, codes ; Computer simulation ; Decoding ; Delay ; Delay effects ; Delay systems ; Equipments and installations ; Exact sciences and technology ; extreme value theory ; Fading ; Gain ; Information, signal and communications theory ; Land mobile radio cellular systems ; Mobile radiocommunication systems ; Multicast ; multicast gain ; multiuser diversity ; Networks ; Opportunistic scheduling ; Performance gain ; Radiocommunications ; Scheduling ; Signal and communications theory ; Statistics ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission ; Transmission and modulation (techniques and equipments) ; Unicast</subject><ispartof>IEEE transactions on wireless communications, 2010-02, Vol.9 (2), p.791-801</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</citedby><cites>FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5403559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5403559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22380165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tze-ping Low</creatorcontrib><creatorcontrib>Man-on Pun</creatorcontrib><creatorcontrib>Hong, Y.-W.P.</creatorcontrib><creatorcontrib>Kuo, C.-C.J.</creatorcontrib><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</description><subject>Applied sciences</subject><subject>Base stations</subject><subject>Cellular</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Computer simulation</subject><subject>Decoding</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>extreme value theory</subject><subject>Fading</subject><subject>Gain</subject><subject>Information, signal and communications theory</subject><subject>Land mobile radio cellular systems</subject><subject>Mobile radiocommunication systems</subject><subject>Multicast</subject><subject>multicast gain</subject><subject>multiuser diversity</subject><subject>Networks</subject><subject>Opportunistic scheduling</subject><subject>Performance gain</subject><subject>Radiocommunications</subject><subject>Scheduling</subject><subject>Signal and communications theory</subject><subject>Statistics</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Unicast</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1EAMhiNEJZaWPwCXCAlBD1k8M_F8HNEKKFKrlUoRx9EkcWCWbBJmklbw65loV3vg0pNt-fEr22-WvWSwZgzM-7vvmzWHVAFfgwGh1ZNsxRB1wXmpny65kAXjSj7Lnse4A2BKIq6y2-04-b3_S00-jOMQprn3cfJ1vp-7FFyc8lj_pGbufP8jf7e9-XqZD_cU8gcfqKMY85q6bu5cyHuaHobwK15kZ63rIr04xvPs26ePd5ur4nr7-cvmw3VRl0ZPhUInWkVONE6YEpEbkJqXAtLGBnUjkZwhXlWgKPVMhUZrXrWVVAisqcR59vagO4bh90xxsnsfl21cT8McrV441Kp8lFTpOWV6Dk_k6__I3TCHPp1hNUoJ3HBMED9AdRhiDNTaMfi9C38sA7vYYZMddrHDArcHO9LQm6Oyi7Xr2uD62sfTJOdCA5OL-KsD54no1MYSBKIR_wBBBJI_</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Tze-ping Low</creator><creator>Man-on Pun</creator><creator>Hong, Y.-W.P.</creator><creator>Kuo, C.-C.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</title><author>Tze-ping Low ; Man-on Pun ; Hong, Y.-W.P. ; Kuo, C.-C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-75a3f7ea3da39455290682430224958d65ea9e2bb07e2909b59882bfb67501db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Base stations</topic><topic>Cellular</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Computer simulation</topic><topic>Decoding</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>extreme value theory</topic><topic>Fading</topic><topic>Gain</topic><topic>Information, signal and communications theory</topic><topic>Land mobile radio cellular systems</topic><topic>Mobile radiocommunication systems</topic><topic>Multicast</topic><topic>multicast gain</topic><topic>multiuser diversity</topic><topic>Networks</topic><topic>Opportunistic scheduling</topic><topic>Performance gain</topic><topic>Radiocommunications</topic><topic>Scheduling</topic><topic>Signal and communications theory</topic><topic>Statistics</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Unicast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tze-ping Low</creatorcontrib><creatorcontrib>Man-on Pun</creatorcontrib><creatorcontrib>Hong, Y.-W.P.</creatorcontrib><creatorcontrib>Kuo, C.-C.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tze-ping Low</au><au>Man-on Pun</au><au>Hong, Y.-W.P.</au><au>Kuo, C.-C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>9</volume><issue>2</issue><spage>791</spage><epage>801</epage><pages>791-801</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2010.02.090387</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2010-02, Vol.9 (2), p.791-801
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_5403559
source IEEE Xplore
subjects Applied sciences
Base stations
Cellular
Channels
Coding, codes
Computer simulation
Decoding
Delay
Delay effects
Delay systems
Equipments and installations
Exact sciences and technology
extreme value theory
Fading
Gain
Information, signal and communications theory
Land mobile radio cellular systems
Mobile radiocommunication systems
Multicast
multicast gain
multiuser diversity
Networks
Opportunistic scheduling
Performance gain
Radiocommunications
Scheduling
Signal and communications theory
Statistics
Studies
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission
Transmission and modulation (techniques and equipments)
Unicast
title Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20opportunistic%20multicast%20scheduling%20(OMS)%20over%20wireless%20cellular%20networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Tze-ping%20Low&rft.date=2010-02-01&rft.volume=9&rft.issue=2&rft.spage=791&rft.epage=801&rft.pages=791-801&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2010.02.090387&rft_dat=%3Cproquest_RIE%3E2289719601%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856602925&rft_id=info:pmid/&rft_ieee_id=5403559&rfr_iscdi=true