Non-rigid registration of 3D facial surfaces with robust outlier detection

Non-rigid registration of 3D facial surfaces is a crucial step in a variety of applications. Outliers, i.e., features in a facial surface that are not present in the reference face, often perturb the registration process. In this paper, we present a novel method which registers facial surfaces relia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaiser, M., Stormer, A., Arsic, D., Rigoll, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Kaiser, M.
Stormer, A.
Arsic, D.
Rigoll, G.
description Non-rigid registration of 3D facial surfaces is a crucial step in a variety of applications. Outliers, i.e., features in a facial surface that are not present in the reference face, often perturb the registration process. In this paper, we present a novel method which registers facial surfaces reliably also in the presence of huge outlier regions. A cost function incorporating several channels (red, green, blue, etc.) is proposed. The weight of each point of the facial surface in the cost function is controlled by a weight map, which is learned iteratively. Ideally, outliers will get a zero weight so that their disturbing effect is decreased. Results show that with an intelligent initialization the weight map improves the registration results considerably.
doi_str_mv 10.1109/WACV.2009.5403053
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5403053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5403053</ieee_id><sourcerecordid>5403053</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b1f0d5e3be955393a3b56ac3c080ecf23e0f29f29cc7d19241ab8e26fb097f143</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjDew1v0A8SU_sOtJTrK7eSz1TtGXoo8lmz2pkbUrSYr491asw8AMDDMPw9iFgEoIMFevs_lLJQFMpRUgaDxgZ0JJpbQyLRyyiayVLA224ogVpmn_s6Y-ZhOhNZS6MXDKipTeYQelJQqYsMencVPGsA49j7QOKUebw7jho-d4zb11wQ48bePOUeJfIb_xOHbblPm4zUOgyHvK5H475-zE2yFRsdcpW97eLOf35eL57mE-W5TBQC474aHXhB0ZrdGgxU7X1qGDFsh5iQRemh2da3phpBK2a0nWvgPTeKFwyi7_ZgMRrT5j-LDxe7V_BX8AbOlR5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-rigid registration of 3D facial surfaces with robust outlier detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaiser, M. ; Stormer, A. ; Arsic, D. ; Rigoll, G.</creator><creatorcontrib>Kaiser, M. ; Stormer, A. ; Arsic, D. ; Rigoll, G.</creatorcontrib><description>Non-rigid registration of 3D facial surfaces is a crucial step in a variety of applications. Outliers, i.e., features in a facial surface that are not present in the reference face, often perturb the registration process. In this paper, we present a novel method which registers facial surfaces reliably also in the presence of huge outlier regions. A cost function incorporating several channels (red, green, blue, etc.) is proposed. The weight of each point of the facial surface in the cost function is controlled by a weight map, which is learned iteratively. Ideally, outliers will get a zero weight so that their disturbing effect is decreased. Results show that with an intelligent initialization the weight map improves the registration results considerably.</description><identifier>ISSN: 1550-5790</identifier><identifier>ISBN: 9781424454976</identifier><identifier>ISBN: 1424454972</identifier><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 1424454980</identifier><identifier>EISBN: 9781424454983</identifier><identifier>EISBN: 9781424454969</identifier><identifier>EISBN: 1424454964</identifier><identifier>DOI: 10.1109/WACV.2009.5403053</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Conformal mapping ; Cost function ; Face detection ; Facial animation ; Glass ; Least squares methods ; Mouth ; Robustness ; Surface treatment</subject><ispartof>2009 Workshop on Applications of Computer Vision (WACV), 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5403053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5403053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Arsic, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>Non-rigid registration of 3D facial surfaces with robust outlier detection</title><title>2009 Workshop on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Non-rigid registration of 3D facial surfaces is a crucial step in a variety of applications. Outliers, i.e., features in a facial surface that are not present in the reference face, often perturb the registration process. In this paper, we present a novel method which registers facial surfaces reliably also in the presence of huge outlier regions. A cost function incorporating several channels (red, green, blue, etc.) is proposed. The weight of each point of the facial surface in the cost function is controlled by a weight map, which is learned iteratively. Ideally, outliers will get a zero weight so that their disturbing effect is decreased. Results show that with an intelligent initialization the weight map improves the registration results considerably.</description><subject>Application software</subject><subject>Conformal mapping</subject><subject>Cost function</subject><subject>Face detection</subject><subject>Facial animation</subject><subject>Glass</subject><subject>Least squares methods</subject><subject>Mouth</subject><subject>Robustness</subject><subject>Surface treatment</subject><issn>1550-5790</issn><issn>2642-9381</issn><isbn>9781424454976</isbn><isbn>1424454972</isbn><isbn>1424454980</isbn><isbn>9781424454983</isbn><isbn>9781424454969</isbn><isbn>1424454964</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjDew1v0A8SU_sOtJTrK7eSz1TtGXoo8lmz2pkbUrSYr491asw8AMDDMPw9iFgEoIMFevs_lLJQFMpRUgaDxgZ0JJpbQyLRyyiayVLA224ogVpmn_s6Y-ZhOhNZS6MXDKipTeYQelJQqYsMencVPGsA49j7QOKUebw7jho-d4zb11wQ48bePOUeJfIb_xOHbblPm4zUOgyHvK5H475-zE2yFRsdcpW97eLOf35eL57mE-W5TBQC474aHXhB0ZrdGgxU7X1qGDFsh5iQRemh2da3phpBK2a0nWvgPTeKFwyi7_ZgMRrT5j-LDxe7V_BX8AbOlR5Q</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Kaiser, M.</creator><creator>Stormer, A.</creator><creator>Arsic, D.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Non-rigid registration of 3D facial surfaces with robust outlier detection</title><author>Kaiser, M. ; Stormer, A. ; Arsic, D. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b1f0d5e3be955393a3b56ac3c080ecf23e0f29f29cc7d19241ab8e26fb097f143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Conformal mapping</topic><topic>Cost function</topic><topic>Face detection</topic><topic>Facial animation</topic><topic>Glass</topic><topic>Least squares methods</topic><topic>Mouth</topic><topic>Robustness</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Arsic, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaiser, M.</au><au>Stormer, A.</au><au>Arsic, D.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-rigid registration of 3D facial surfaces with robust outlier detection</atitle><btitle>2009 Workshop on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2009-12</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1550-5790</issn><eissn>2642-9381</eissn><isbn>9781424454976</isbn><isbn>1424454972</isbn><eisbn>1424454980</eisbn><eisbn>9781424454983</eisbn><eisbn>9781424454969</eisbn><eisbn>1424454964</eisbn><abstract>Non-rigid registration of 3D facial surfaces is a crucial step in a variety of applications. Outliers, i.e., features in a facial surface that are not present in the reference face, often perturb the registration process. In this paper, we present a novel method which registers facial surfaces reliably also in the presence of huge outlier regions. A cost function incorporating several channels (red, green, blue, etc.) is proposed. The weight of each point of the facial surface in the cost function is controlled by a weight map, which is learned iteratively. Ideally, outliers will get a zero weight so that their disturbing effect is decreased. Results show that with an intelligent initialization the weight map improves the registration results considerably.</abstract><pub>IEEE</pub><doi>10.1109/WACV.2009.5403053</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5790
ispartof 2009 Workshop on Applications of Computer Vision (WACV), 2009, p.1-6
issn 1550-5790
2642-9381
language eng
recordid cdi_ieee_primary_5403053
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Conformal mapping
Cost function
Face detection
Facial animation
Glass
Least squares methods
Mouth
Robustness
Surface treatment
title Non-rigid registration of 3D facial surfaces with robust outlier detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-rigid%20registration%20of%203D%20facial%20surfaces%20with%20robust%20outlier%20detection&rft.btitle=2009%20Workshop%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Kaiser,%20M.&rft.date=2009-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1550-5790&rft.eissn=2642-9381&rft.isbn=9781424454976&rft.isbn_list=1424454972&rft_id=info:doi/10.1109/WACV.2009.5403053&rft_dat=%3Cieee_6IE%3E5403053%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424454980&rft.eisbn_list=9781424454983&rft.eisbn_list=9781424454969&rft.eisbn_list=1424454964&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5403053&rfr_iscdi=true