E-learning Behavior Analysis Based on Fuzzy Clustering

E-learning behavior analysis is an important issue to the instruction based on Internet. This paper proposed a new method to analyze the e-learning behavior. It classified e-learning behaviors into several clusters by fuzzy clustering algorithm. Behaviors in the same cluster have the most common in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jili Chen, Kebin Huang, Feng Wang, Huixia Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue
container_start_page 863
container_title
container_volume
creator Jili Chen
Kebin Huang
Feng Wang
Huixia Wang
description E-learning behavior analysis is an important issue to the instruction based on Internet. This paper proposed a new method to analyze the e-learning behavior. It classified e-learning behaviors into several clusters by fuzzy clustering algorithm. Behaviors in the same cluster have the most common in characters, while behaviors between clusters have the least common. Experiments fully demonstrated that the proposed method can achieve good performance of analyzing e-learning behavior. It shows that by using cluster analysis, teachers can understand the students better in interest, personality and other informations. It also helps to develop effective educational resource and carry out the personalized instruction.
doi_str_mv 10.1109/WGEC.2009.214
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5402847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5402847</ieee_id><sourcerecordid>5402847</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aef7f0958b824556b610f8d08c8dbf46b29c2c04351f74c26b31550fe8a2dce53</originalsourceid><addsrcrecordid>eNotjUFLwzAYQAMiKLPHnbzkD7R-SfMl6XEr3RQGXpQdR9J-0UDtJNmE7tc70NO7PN5jbCmgEgKap_22aysJ0FRSqBtWNMYKJZVCqbC-Y0XO0YPURmvUcM90V47k0hSnD76mT_cTj4mvJjfOOWa-dpkGfpz45ny5zLwdz_lE6eo-sNvgxkzFPxfsfdO9tc_l7nX70q52ZRQGT6WjYAI0aL297lF7LSDYAWxvBx-U9rLpZQ-qRhGM6qX2tUCEQNbJoSesF-zxrxuJ6PCd4pdL8wEVSKtM_QtNbkOE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>E-learning Behavior Analysis Based on Fuzzy Clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jili Chen ; Kebin Huang ; Feng Wang ; Huixia Wang</creator><creatorcontrib>Jili Chen ; Kebin Huang ; Feng Wang ; Huixia Wang</creatorcontrib><description>E-learning behavior analysis is an important issue to the instruction based on Internet. This paper proposed a new method to analyze the e-learning behavior. It classified e-learning behaviors into several clusters by fuzzy clustering algorithm. Behaviors in the same cluster have the most common in characters, while behaviors between clusters have the least common. Experiments fully demonstrated that the proposed method can achieve good performance of analyzing e-learning behavior. It shows that by using cluster analysis, teachers can understand the students better in interest, personality and other informations. It also helps to develop effective educational resource and carry out the personalized instruction.</description><identifier>ISBN: 9781424452453</identifier><identifier>ISBN: 1424452457</identifier><identifier>ISBN: 9780769538990</identifier><identifier>ISBN: 0769538991</identifier><identifier>DOI: 10.1109/WGEC.2009.214</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Clustering methods ; E-learning behavior ; Educational institutions ; Educational technology ; Electronic learning ; fuzzy cluster ; Genetics ; Internet ; Pattern recognition ; Statistical analysis</subject><ispartof>2009 Third International Conference on Genetic and Evolutionary Computing, 2009, p.863-866</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5402847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5402847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jili Chen</creatorcontrib><creatorcontrib>Kebin Huang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Huixia Wang</creatorcontrib><title>E-learning Behavior Analysis Based on Fuzzy Clustering</title><title>2009 Third International Conference on Genetic and Evolutionary Computing</title><addtitle>WGEC</addtitle><description>E-learning behavior analysis is an important issue to the instruction based on Internet. This paper proposed a new method to analyze the e-learning behavior. It classified e-learning behaviors into several clusters by fuzzy clustering algorithm. Behaviors in the same cluster have the most common in characters, while behaviors between clusters have the least common. Experiments fully demonstrated that the proposed method can achieve good performance of analyzing e-learning behavior. It shows that by using cluster analysis, teachers can understand the students better in interest, personality and other informations. It also helps to develop effective educational resource and carry out the personalized instruction.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>E-learning behavior</subject><subject>Educational institutions</subject><subject>Educational technology</subject><subject>Electronic learning</subject><subject>fuzzy cluster</subject><subject>Genetics</subject><subject>Internet</subject><subject>Pattern recognition</subject><subject>Statistical analysis</subject><isbn>9781424452453</isbn><isbn>1424452457</isbn><isbn>9780769538990</isbn><isbn>0769538991</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjUFLwzAYQAMiKLPHnbzkD7R-SfMl6XEr3RQGXpQdR9J-0UDtJNmE7tc70NO7PN5jbCmgEgKap_22aysJ0FRSqBtWNMYKJZVCqbC-Y0XO0YPURmvUcM90V47k0hSnD76mT_cTj4mvJjfOOWa-dpkGfpz45ny5zLwdz_lE6eo-sNvgxkzFPxfsfdO9tc_l7nX70q52ZRQGT6WjYAI0aL297lF7LSDYAWxvBx-U9rLpZQ-qRhGM6qX2tUCEQNbJoSesF-zxrxuJ6PCd4pdL8wEVSKtM_QtNbkOE</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Jili Chen</creator><creator>Kebin Huang</creator><creator>Feng Wang</creator><creator>Huixia Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>E-learning Behavior Analysis Based on Fuzzy Clustering</title><author>Jili Chen ; Kebin Huang ; Feng Wang ; Huixia Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aef7f0958b824556b610f8d08c8dbf46b29c2c04351f74c26b31550fe8a2dce53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>E-learning behavior</topic><topic>Educational institutions</topic><topic>Educational technology</topic><topic>Electronic learning</topic><topic>fuzzy cluster</topic><topic>Genetics</topic><topic>Internet</topic><topic>Pattern recognition</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jili Chen</creatorcontrib><creatorcontrib>Kebin Huang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Huixia Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jili Chen</au><au>Kebin Huang</au><au>Feng Wang</au><au>Huixia Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>E-learning Behavior Analysis Based on Fuzzy Clustering</atitle><btitle>2009 Third International Conference on Genetic and Evolutionary Computing</btitle><stitle>WGEC</stitle><date>2009-10</date><risdate>2009</risdate><spage>863</spage><epage>866</epage><pages>863-866</pages><isbn>9781424452453</isbn><isbn>1424452457</isbn><isbn>9780769538990</isbn><isbn>0769538991</isbn><abstract>E-learning behavior analysis is an important issue to the instruction based on Internet. This paper proposed a new method to analyze the e-learning behavior. It classified e-learning behaviors into several clusters by fuzzy clustering algorithm. Behaviors in the same cluster have the most common in characters, while behaviors between clusters have the least common. Experiments fully demonstrated that the proposed method can achieve good performance of analyzing e-learning behavior. It shows that by using cluster analysis, teachers can understand the students better in interest, personality and other informations. It also helps to develop effective educational resource and carry out the personalized instruction.</abstract><pub>IEEE</pub><doi>10.1109/WGEC.2009.214</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424452453
ispartof 2009 Third International Conference on Genetic and Evolutionary Computing, 2009, p.863-866
issn
language eng
recordid cdi_ieee_primary_5402847
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Clustering methods
E-learning behavior
Educational institutions
Educational technology
Electronic learning
fuzzy cluster
Genetics
Internet
Pattern recognition
Statistical analysis
title E-learning Behavior Analysis Based on Fuzzy Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=E-learning%20Behavior%20Analysis%20Based%20on%20Fuzzy%20Clustering&rft.btitle=2009%20Third%20International%20Conference%20on%20Genetic%20and%20Evolutionary%20Computing&rft.au=Jili%20Chen&rft.date=2009-10&rft.spage=863&rft.epage=866&rft.pages=863-866&rft.isbn=9781424452453&rft.isbn_list=1424452457&rft.isbn_list=9780769538990&rft.isbn_list=0769538991&rft_id=info:doi/10.1109/WGEC.2009.214&rft_dat=%3Cieee_6IE%3E5402847%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5402847&rfr_iscdi=true