Measured temperature dependence of scintillation camera signals read out by geiger-Müller mode avalanche photodiodes

We are developing a prototype monolithic scintillation camera with optical sensors on the entrance surface (SES) for use with statistically-estimated depth-of-interaction in a continuous scintillator. We opt to use Geiger-Muller mode avalanche photodiodes (GM-APDs) for the SES camera since they poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hunter, W.C.J., Miyaoka, R.S., MacDonald, L.R., Lewellen, T.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are developing a prototype monolithic scintillation camera with optical sensors on the entrance surface (SES) for use with statistically-estimated depth-of-interaction in a continuous scintillator. We opt to use Geiger-Muller mode avalanche photodiodes (GM-APDs) for the SES camera since they possess many desirable properties; for the intended application (SES and PET/MR imaging), they offer a thin attenuation profile and an operational insensitivity to large magnetic fields. However, one issue that must be addressed in using GM-APDs in an RF environment (as in MR scanners) is the thermal dissipation that can occur in this semiconductor material. Signals of GM-APDs are strongly dependent on junction temperature. Consequently, we are developing a temperature-controlled GM-APD-based PET camera whose monitored temperature can be used to dynamically account for the temperature dependence of the output signals. Presently, we aim to characterize the output-signal dependence on temperature and bias for a GM-APD-based scintillation camera. We've examined two GM-APDs, a Zecotek prototype MAPD-3N, and a SensL commercial SPMArray2. The dominant effect of temperature on gain that we observe results from a linear dependence of breakdown voltage on temperature (0.071 V/°C and 0.024 V/°C, respectively); at 2.3 V excess bias (voltage above breakdown) the resulting change in gain with temperature (without adjusting bias voltage) is -8.5% per°C for the MAPD-3N and -1.5 % per °C for the SPMArray2. For fixed excess bias, change in dark current with temperature varied widely, decreasing by 25% to 40% as temperature was changed from 20°C to 10°C and again by 20% to 35% going from 10°C to 0°C. Finally, using two MAPD-3N to read out a pair of 3.5-by-3.5-by-20 mm 3 Zecotek LFS-3 scintillators in coincidence, we observe a decrease from 1.7 nsec to 1.5 nsec in coincidence-time resolution as we lowered temperature from 23°C to 10°C.
ISSN:1082-3654
1095-7863
2577-0829
DOI:10.1109/NSSMIC.2009.5401995