Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data
Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2010-09, Vol.16 (5), p.841-853 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | 5 |
container_start_page | 841 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 16 |
creator | Teets, Jay M Tegarden, David P Russell, Roberta S |
description | Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality. |
doi_str_mv | 10.1109/TVCG.2010.21 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5401159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5401159</ieee_id><sourcerecordid>2778383051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoPqo7d4IE3Do1j5kk467U-gBBhOp2yKQ3GmknNckU68a_7oxVV_cezsc5cBA6pmRIKSkvps_jmyEjnWR0C-3TMqcZKYjY7n4iZcYEE3voIMY3Qmieq3IX7TEiqOCl2kdfT9E1L3jsXxqX3ArwtUt4-go-rHHyeLLS81YnwOkV8MRaMD3UQIzYW3zXWB8WOjnf4GcXWz13nz8qXuJRgycferGcA95UPPZ2WuNRjG3QjQF8pZM-RDtWzyMc_d4BerqeTMe32f3Dzd14dJ8ZTkTKZozY2gAzALkpckGlYdKKwkpGeC3LWtaKKsk5N6AE6JxLUSujirJmxs6AD9DZJncZ_HsLMVVvvg1NV1lRohgTkgjVUecbygQfYwBbLYNb6LDuoKpfu-rXrvq1K0Y7_PQ3tK0XMPuH_-btgJMN4ADg3y5yQmlR8m8VYYR9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082267068</pqid></control><display><type>article</type><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><source>IEEE Electronic Library (IEL)</source><creator>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</creator><creatorcontrib>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</creatorcontrib><description>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2010.21</identifier><identifier>PMID: 20616398</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer errors ; Costs ; Data visualization ; Decision making ; Experimental design ; information visualization ; Manufacturing processes ; Monitoring ; Packaging ; Process control ; Quality assurance ; Quality control ; user interface evaluation</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-09, Vol.16 (5), p.841-853</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</citedby><cites>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5401159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5401159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20616398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teets, Jay M</creatorcontrib><creatorcontrib>Tegarden, David P</creatorcontrib><creatorcontrib>Russell, Roberta S</creatorcontrib><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</description><subject>Computer errors</subject><subject>Costs</subject><subject>Data visualization</subject><subject>Decision making</subject><subject>Experimental design</subject><subject>information visualization</subject><subject>Manufacturing processes</subject><subject>Monitoring</subject><subject>Packaging</subject><subject>Process control</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>user interface evaluation</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoPqo7d4IE3Do1j5kk467U-gBBhOp2yKQ3GmknNckU68a_7oxVV_cezsc5cBA6pmRIKSkvps_jmyEjnWR0C-3TMqcZKYjY7n4iZcYEE3voIMY3Qmieq3IX7TEiqOCl2kdfT9E1L3jsXxqX3ArwtUt4-go-rHHyeLLS81YnwOkV8MRaMD3UQIzYW3zXWB8WOjnf4GcXWz13nz8qXuJRgycferGcA95UPPZ2WuNRjG3QjQF8pZM-RDtWzyMc_d4BerqeTMe32f3Dzd14dJ8ZTkTKZozY2gAzALkpckGlYdKKwkpGeC3LWtaKKsk5N6AE6JxLUSujirJmxs6AD9DZJncZ_HsLMVVvvg1NV1lRohgTkgjVUecbygQfYwBbLYNb6LDuoKpfu-rXrvq1K0Y7_PQ3tK0XMPuH_-btgJMN4ADg3y5yQmlR8m8VYYR9</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Teets, Jay M</creator><creator>Tegarden, David P</creator><creator>Russell, Roberta S</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><author>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer errors</topic><topic>Costs</topic><topic>Data visualization</topic><topic>Decision making</topic><topic>Experimental design</topic><topic>information visualization</topic><topic>Manufacturing processes</topic><topic>Monitoring</topic><topic>Packaging</topic><topic>Process control</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>user interface evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teets, Jay M</creatorcontrib><creatorcontrib>Tegarden, David P</creatorcontrib><creatorcontrib>Russell, Roberta S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teets, Jay M</au><au>Tegarden, David P</au><au>Russell, Roberta S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>841</spage><epage>853</epage><pages>841-853</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20616398</pmid><doi>10.1109/TVCG.2010.21</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2010-09, Vol.16 (5), p.841-853 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_5401159 |
source | IEEE Electronic Library (IEL) |
subjects | Computer errors Costs Data visualization Decision making Experimental design information visualization Manufacturing processes Monitoring Packaging Process control Quality assurance Quality control user interface evaluation |
title | Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Cognitive%20Fit%20Theory%20to%20Evaluate%20the%20Effectiveness%20of%20Information%20Visualizations:%20An%20Example%20Using%20Quality%20Assurance%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Teets,%20Jay%20M&rft.date=2010-09-01&rft.volume=16&rft.issue=5&rft.spage=841&rft.epage=853&rft.pages=841-853&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2010.21&rft_dat=%3Cproquest_RIE%3E2778383051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082267068&rft_id=info:pmid/20616398&rft_ieee_id=5401159&rfr_iscdi=true |