Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data

Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2010-09, Vol.16 (5), p.841-853
Hauptverfasser: Teets, Jay M, Tegarden, David P, Russell, Roberta S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 5
container_start_page 841
container_title IEEE transactions on visualization and computer graphics
container_volume 16
creator Teets, Jay M
Tegarden, David P
Russell, Roberta S
description Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.
doi_str_mv 10.1109/TVCG.2010.21
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5401159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5401159</ieee_id><sourcerecordid>2778383051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoPqo7d4IE3Do1j5kk467U-gBBhOp2yKQ3GmknNckU68a_7oxVV_cezsc5cBA6pmRIKSkvps_jmyEjnWR0C-3TMqcZKYjY7n4iZcYEE3voIMY3Qmieq3IX7TEiqOCl2kdfT9E1L3jsXxqX3ArwtUt4-go-rHHyeLLS81YnwOkV8MRaMD3UQIzYW3zXWB8WOjnf4GcXWz13nz8qXuJRgycferGcA95UPPZ2WuNRjG3QjQF8pZM-RDtWzyMc_d4BerqeTMe32f3Dzd14dJ8ZTkTKZozY2gAzALkpckGlYdKKwkpGeC3LWtaKKsk5N6AE6JxLUSujirJmxs6AD9DZJncZ_HsLMVVvvg1NV1lRohgTkgjVUecbygQfYwBbLYNb6LDuoKpfu-rXrvq1K0Y7_PQ3tK0XMPuH_-btgJMN4ADg3y5yQmlR8m8VYYR9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082267068</pqid></control><display><type>article</type><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><source>IEEE Electronic Library (IEL)</source><creator>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</creator><creatorcontrib>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</creatorcontrib><description>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2010.21</identifier><identifier>PMID: 20616398</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer errors ; Costs ; Data visualization ; Decision making ; Experimental design ; information visualization ; Manufacturing processes ; Monitoring ; Packaging ; Process control ; Quality assurance ; Quality control ; user interface evaluation</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-09, Vol.16 (5), p.841-853</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</citedby><cites>FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5401159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5401159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20616398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teets, Jay M</creatorcontrib><creatorcontrib>Tegarden, David P</creatorcontrib><creatorcontrib>Russell, Roberta S</creatorcontrib><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</description><subject>Computer errors</subject><subject>Costs</subject><subject>Data visualization</subject><subject>Decision making</subject><subject>Experimental design</subject><subject>information visualization</subject><subject>Manufacturing processes</subject><subject>Monitoring</subject><subject>Packaging</subject><subject>Process control</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>user interface evaluation</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoPqo7d4IE3Do1j5kk467U-gBBhOp2yKQ3GmknNckU68a_7oxVV_cezsc5cBA6pmRIKSkvps_jmyEjnWR0C-3TMqcZKYjY7n4iZcYEE3voIMY3Qmieq3IX7TEiqOCl2kdfT9E1L3jsXxqX3ArwtUt4-go-rHHyeLLS81YnwOkV8MRaMD3UQIzYW3zXWB8WOjnf4GcXWz13nz8qXuJRgycferGcA95UPPZ2WuNRjG3QjQF8pZM-RDtWzyMc_d4BerqeTMe32f3Dzd14dJ8ZTkTKZozY2gAzALkpckGlYdKKwkpGeC3LWtaKKsk5N6AE6JxLUSujirJmxs6AD9DZJncZ_HsLMVVvvg1NV1lRohgTkgjVUecbygQfYwBbLYNb6LDuoKpfu-rXrvq1K0Y7_PQ3tK0XMPuH_-btgJMN4ADg3y5yQmlR8m8VYYR9</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Teets, Jay M</creator><creator>Tegarden, David P</creator><creator>Russell, Roberta S</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</title><author>Teets, Jay M ; Tegarden, David P ; Russell, Roberta S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-d20fbce2cee4c54617c27f65f7203b79b7b8187333ce86ea4376b8c859b2cfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer errors</topic><topic>Costs</topic><topic>Data visualization</topic><topic>Decision making</topic><topic>Experimental design</topic><topic>information visualization</topic><topic>Manufacturing processes</topic><topic>Monitoring</topic><topic>Packaging</topic><topic>Process control</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>user interface evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teets, Jay M</creatorcontrib><creatorcontrib>Tegarden, David P</creatorcontrib><creatorcontrib>Russell, Roberta S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teets, Jay M</au><au>Tegarden, David P</au><au>Russell, Roberta S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>841</spage><epage>853</epage><pages>841-853</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Cognitive fit theory, along with the proximity compatibility principle, is investigated as a basis to evaluate the effectiveness of information visualizations to support a decision-making task. The task used in this study manipulates varying levels of task complexity for quality control decisions in a high-volume discrete manufacturing environment. The volume of process monitoring and quality control data produced in this type of environment can be daunting. Today's managers need effective decision support tools to sort through the morass of data in a timely fashion to make critical decisions on product and process quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20616398</pmid><doi>10.1109/TVCG.2010.21</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2010-09, Vol.16 (5), p.841-853
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_5401159
source IEEE Electronic Library (IEL)
subjects Computer errors
Costs
Data visualization
Decision making
Experimental design
information visualization
Manufacturing processes
Monitoring
Packaging
Process control
Quality assurance
Quality control
user interface evaluation
title Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Cognitive%20Fit%20Theory%20to%20Evaluate%20the%20Effectiveness%20of%20Information%20Visualizations:%20An%20Example%20Using%20Quality%20Assurance%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Teets,%20Jay%20M&rft.date=2010-09-01&rft.volume=16&rft.issue=5&rft.spage=841&rft.epage=853&rft.pages=841-853&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2010.21&rft_dat=%3Cproquest_RIE%3E2778383051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082267068&rft_id=info:pmid/20616398&rft_ieee_id=5401159&rfr_iscdi=true