VARMAX-based closed-loop subspace model identification

In this paper a predictor-based subspace model identification method is presented that relaxes the requirement that the past window has to be large for asymptotical consistent estimates. By utilizing a VARMAX model, a finite description of the input-output relation is formulated. An extended least s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Houtzager, I., van Wingerden, J.-W., Verhaegen, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3375
container_issue
container_start_page 3370
container_title
container_volume
creator Houtzager, I.
van Wingerden, J.-W.
Verhaegen, M.
description In this paper a predictor-based subspace model identification method is presented that relaxes the requirement that the past window has to be large for asymptotical consistent estimates. By utilizing a VARMAX model, a finite description of the input-output relation is formulated. An extended least squares recursion is used to estimate the Markov parameters in the VARMAX model set. Using the Markov parameters the state sequence can be estimated and consequently the system matrices can be recovered. The effectiveness of the proposed method in comparison with an existing method is emphasized with a simulation study on a wind turbine model operating in closed loop.
doi_str_mv 10.1109/CDC.2009.5400695
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5400695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5400695</ieee_id><sourcerecordid>5400695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-ae9a8c001b2b5d95f34d1841d21af0fad3a1b5d222d9a7d511617025717f25a83</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhUe0YK3dC27yBybeO8_MMsQnVARRcVduMjMwkjahExf-ewN24-rjcD7O4jB2hVAigrtpbptSALhSKwDj9AlbO1uhEkrJygp5-i-jOWNLQIdcCDQLtrSOGwXO4Dm7yPkLACowZsnMR_36XH_ylnLwRdcPM3g_DGORv9s8UheK3eBDXyQf9lOKqaMpDftLtojU57A-csXe7-_emke-eXl4auoN74QQE6fgqOoAsBWt9k5HqTxWCr1AihDJS8K5mF3vyHqNaNCC0BZtFJoquWLXf7sphLAdD2lHh5_t8QL5C9vhSVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>VARMAX-based closed-loop subspace model identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Houtzager, I. ; van Wingerden, J.-W. ; Verhaegen, M.</creator><creatorcontrib>Houtzager, I. ; van Wingerden, J.-W. ; Verhaegen, M.</creatorcontrib><description>In this paper a predictor-based subspace model identification method is presented that relaxes the requirement that the past window has to be large for asymptotical consistent estimates. By utilizing a VARMAX model, a finite description of the input-output relation is formulated. An extended least squares recursion is used to estimate the Markov parameters in the VARMAX model set. Using the Markov parameters the state sequence can be estimated and consequently the system matrices can be recovered. The effectiveness of the proposed method in comparison with an existing method is emphasized with a simulation study on a wind turbine model operating in closed loop.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424438716</identifier><identifier>ISBN: 1424438713</identifier><identifier>EISBN: 9781424438723</identifier><identifier>EISBN: 1424438721</identifier><identifier>DOI: 10.1109/CDC.2009.5400695</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Autoregressive processes ; Information retrieval ; Least squares approximation ; MIMO ; Parameter estimation ; Predictive models ; Recursive estimation ; State estimation ; Wind turbines</subject><ispartof>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.3370-3375</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-ae9a8c001b2b5d95f34d1841d21af0fad3a1b5d222d9a7d511617025717f25a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5400695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5400695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Houtzager, I.</creatorcontrib><creatorcontrib>van Wingerden, J.-W.</creatorcontrib><creatorcontrib>Verhaegen, M.</creatorcontrib><title>VARMAX-based closed-loop subspace model identification</title><title>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</title><addtitle>CDC</addtitle><description>In this paper a predictor-based subspace model identification method is presented that relaxes the requirement that the past window has to be large for asymptotical consistent estimates. By utilizing a VARMAX model, a finite description of the input-output relation is formulated. An extended least squares recursion is used to estimate the Markov parameters in the VARMAX model set. Using the Markov parameters the state sequence can be estimated and consequently the system matrices can be recovered. The effectiveness of the proposed method in comparison with an existing method is emphasized with a simulation study on a wind turbine model operating in closed loop.</description><subject>Adaptive control</subject><subject>Autoregressive processes</subject><subject>Information retrieval</subject><subject>Least squares approximation</subject><subject>MIMO</subject><subject>Parameter estimation</subject><subject>Predictive models</subject><subject>Recursive estimation</subject><subject>State estimation</subject><subject>Wind turbines</subject><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><isbn>9781424438723</isbn><isbn>1424438721</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhUe0YK3dC27yBybeO8_MMsQnVARRcVduMjMwkjahExf-ewN24-rjcD7O4jB2hVAigrtpbptSALhSKwDj9AlbO1uhEkrJygp5-i-jOWNLQIdcCDQLtrSOGwXO4Dm7yPkLACowZsnMR_36XH_ylnLwRdcPM3g_DGORv9s8UheK3eBDXyQf9lOKqaMpDftLtojU57A-csXe7-_emke-eXl4auoN74QQE6fgqOoAsBWt9k5HqTxWCr1AihDJS8K5mF3vyHqNaNCC0BZtFJoquWLXf7sphLAdD2lHh5_t8QL5C9vhSVA</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Houtzager, I.</creator><creator>van Wingerden, J.-W.</creator><creator>Verhaegen, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>VARMAX-based closed-loop subspace model identification</title><author>Houtzager, I. ; van Wingerden, J.-W. ; Verhaegen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-ae9a8c001b2b5d95f34d1841d21af0fad3a1b5d222d9a7d511617025717f25a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Autoregressive processes</topic><topic>Information retrieval</topic><topic>Least squares approximation</topic><topic>MIMO</topic><topic>Parameter estimation</topic><topic>Predictive models</topic><topic>Recursive estimation</topic><topic>State estimation</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Houtzager, I.</creatorcontrib><creatorcontrib>van Wingerden, J.-W.</creatorcontrib><creatorcontrib>Verhaegen, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Houtzager, I.</au><au>van Wingerden, J.-W.</au><au>Verhaegen, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>VARMAX-based closed-loop subspace model identification</atitle><btitle>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</btitle><stitle>CDC</stitle><date>2009-12</date><risdate>2009</risdate><spage>3370</spage><epage>3375</epage><pages>3370-3375</pages><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><eisbn>9781424438723</eisbn><eisbn>1424438721</eisbn><abstract>In this paper a predictor-based subspace model identification method is presented that relaxes the requirement that the past window has to be large for asymptotical consistent estimates. By utilizing a VARMAX model, a finite description of the input-output relation is formulated. An extended least squares recursion is used to estimate the Markov parameters in the VARMAX model set. Using the Markov parameters the state sequence can be estimated and consequently the system matrices can be recovered. The effectiveness of the proposed method in comparison with an existing method is emphasized with a simulation study on a wind turbine model operating in closed loop.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2009.5400695</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.3370-3375
issn 0191-2216
language eng
recordid cdi_ieee_primary_5400695
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Autoregressive processes
Information retrieval
Least squares approximation
MIMO
Parameter estimation
Predictive models
Recursive estimation
State estimation
Wind turbines
title VARMAX-based closed-loop subspace model identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=VARMAX-based%20closed-loop%20subspace%20model%20identification&rft.btitle=Proceedings%20of%20the%2048h%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20held%20jointly%20with%202009%2028th%20Chinese%20Control%20Conference&rft.au=Houtzager,%20I.&rft.date=2009-12&rft.spage=3370&rft.epage=3375&rft.pages=3370-3375&rft.issn=0191-2216&rft.isbn=9781424438716&rft.isbn_list=1424438713&rft_id=info:doi/10.1109/CDC.2009.5400695&rft_dat=%3Cieee_6IE%3E5400695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438723&rft.eisbn_list=1424438721&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5400695&rfr_iscdi=true