Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions
Receding Horizon (RH) control is an established control methodology which has been used successfully for many control applications. More recently it has been applied for autonomous vehicle guidance. Its successful implementation, in particular for applications involving agile vehicles like rotorcraf...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2983 |
---|---|
container_issue | |
container_start_page | 2978 |
container_title | |
container_volume | |
creator | Dadkhah, N. Korukanti, V.R. Zhaodan Kong Mettler, B. |
description | Receding Horizon (RH) control is an established control methodology which has been used successfully for many control applications. More recently it has been applied for autonomous vehicle guidance. Its successful implementation, in particular for applications involving agile vehicles like rotorcraft, hinges on two critical factors: (1) adequately accounting for the vehicle dynamics to guarantee that the trajectory is feasible and also that the capabilities of the vehicle are fully exploited; (2) using an appropriate cost-to-go (CTG) function to account for the discarded tail of the trajectory. In this paper we describe the experimental evaluation of a RH trajectory optimization scheme with a CTG function which approximates the value function associated with the minimum time optimal trajectory planning problem. The paper describes how the CTG function is computed; how the system is integrated; and finally describes the experimental demonstration of the guidance scheme. The experiments were performed in our Interactive Guidance and Control Laboratory which combines state of the art software architecture with a customized miniature helicopter. |
doi_str_mv | 10.1109/CDC.2009.5400429 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5400429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5400429</ieee_id><sourcerecordid>5400429</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-baf55764fcf257de86e31df17a2aff2ee247d10a8f6056988b1bf56b849753ea3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhiNasNbeBS_5A1uTbD6Psn5CwYueS3Z3oim72bBJpfXXu9JevMzLvDw8MIPQDSUrSom5qx6qFSPErAQnhDNzhpZGacoZ56VWrDz_t1N5geaEGlowRuUMzZUpJCdG0kt0ldKWEKKJlHMUH_cRRt9DyLbDLfRDSHm02Q8BDw7baYbOB8BTuYUmD-MBDzH73v8codR8QQ94l3z4xDbGcdj73mbAKU7A5Py23Q6w24Xmj0_XaOZsl2B5ygX6eHp8r16K9dvza3W_LjxVIhe1dUIoyV3jmFAtaAklbR1VllnnGADjqqXEaieJkEbrmtZOyFpzo0QJtlyg26PXA8AmTifa8bA5Pa_8BRl5YgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dadkhah, N. ; Korukanti, V.R. ; Zhaodan Kong ; Mettler, B.</creator><creatorcontrib>Dadkhah, N. ; Korukanti, V.R. ; Zhaodan Kong ; Mettler, B.</creatorcontrib><description>Receding Horizon (RH) control is an established control methodology which has been used successfully for many control applications. More recently it has been applied for autonomous vehicle guidance. Its successful implementation, in particular for applications involving agile vehicles like rotorcraft, hinges on two critical factors: (1) adequately accounting for the vehicle dynamics to guarantee that the trajectory is feasible and also that the capabilities of the vehicle are fully exploited; (2) using an appropriate cost-to-go (CTG) function to account for the discarded tail of the trajectory. In this paper we describe the experimental evaluation of a RH trajectory optimization scheme with a CTG function which approximates the value function associated with the minimum time optimal trajectory planning problem. The paper describes how the CTG function is computed; how the system is integrated; and finally describes the experimental demonstration of the guidance scheme. The experiments were performed in our Interactive Guidance and Control Laboratory which combines state of the art software architecture with a customized miniature helicopter.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424438716</identifier><identifier>ISBN: 1424438713</identifier><identifier>EISBN: 9781424438723</identifier><identifier>EISBN: 1424438721</identifier><identifier>DOI: 10.1109/CDC.2009.5400429</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fasteners ; Helicopters ; Laboratories ; Mobile robots ; Navigation ; Remotely operated vehicles ; Software architecture ; Tail ; Trajectory ; Vehicle dynamics</subject><ispartof>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.2978-2983</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5400429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5400429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dadkhah, N.</creatorcontrib><creatorcontrib>Korukanti, V.R.</creatorcontrib><creatorcontrib>Zhaodan Kong</creatorcontrib><creatorcontrib>Mettler, B.</creatorcontrib><title>Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions</title><title>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</title><addtitle>CDC</addtitle><description>Receding Horizon (RH) control is an established control methodology which has been used successfully for many control applications. More recently it has been applied for autonomous vehicle guidance. Its successful implementation, in particular for applications involving agile vehicles like rotorcraft, hinges on two critical factors: (1) adequately accounting for the vehicle dynamics to guarantee that the trajectory is feasible and also that the capabilities of the vehicle are fully exploited; (2) using an appropriate cost-to-go (CTG) function to account for the discarded tail of the trajectory. In this paper we describe the experimental evaluation of a RH trajectory optimization scheme with a CTG function which approximates the value function associated with the minimum time optimal trajectory planning problem. The paper describes how the CTG function is computed; how the system is integrated; and finally describes the experimental demonstration of the guidance scheme. The experiments were performed in our Interactive Guidance and Control Laboratory which combines state of the art software architecture with a customized miniature helicopter.</description><subject>Fasteners</subject><subject>Helicopters</subject><subject>Laboratories</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Remotely operated vehicles</subject><subject>Software architecture</subject><subject>Tail</subject><subject>Trajectory</subject><subject>Vehicle dynamics</subject><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><isbn>9781424438723</isbn><isbn>1424438721</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LAzEQhiNasNbeBS_5A1uTbD6Psn5CwYueS3Z3oim72bBJpfXXu9JevMzLvDw8MIPQDSUrSom5qx6qFSPErAQnhDNzhpZGacoZ56VWrDz_t1N5geaEGlowRuUMzZUpJCdG0kt0ldKWEKKJlHMUH_cRRt9DyLbDLfRDSHm02Q8BDw7baYbOB8BTuYUmD-MBDzH73v8codR8QQ94l3z4xDbGcdj73mbAKU7A5Py23Q6w24Xmj0_XaOZsl2B5ygX6eHp8r16K9dvza3W_LjxVIhe1dUIoyV3jmFAtaAklbR1VllnnGADjqqXEaieJkEbrmtZOyFpzo0QJtlyg26PXA8AmTifa8bA5Pa_8BRl5YgA</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Dadkhah, N.</creator><creator>Korukanti, V.R.</creator><creator>Zhaodan Kong</creator><creator>Mettler, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions</title><author>Dadkhah, N. ; Korukanti, V.R. ; Zhaodan Kong ; Mettler, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-baf55764fcf257de86e31df17a2aff2ee247d10a8f6056988b1bf56b849753ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Fasteners</topic><topic>Helicopters</topic><topic>Laboratories</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Remotely operated vehicles</topic><topic>Software architecture</topic><topic>Tail</topic><topic>Trajectory</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Dadkhah, N.</creatorcontrib><creatorcontrib>Korukanti, V.R.</creatorcontrib><creatorcontrib>Zhaodan Kong</creatorcontrib><creatorcontrib>Mettler, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dadkhah, N.</au><au>Korukanti, V.R.</au><au>Zhaodan Kong</au><au>Mettler, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions</atitle><btitle>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</btitle><stitle>CDC</stitle><date>2009-12</date><risdate>2009</risdate><spage>2978</spage><epage>2983</epage><pages>2978-2983</pages><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><eisbn>9781424438723</eisbn><eisbn>1424438721</eisbn><abstract>Receding Horizon (RH) control is an established control methodology which has been used successfully for many control applications. More recently it has been applied for autonomous vehicle guidance. Its successful implementation, in particular for applications involving agile vehicles like rotorcraft, hinges on two critical factors: (1) adequately accounting for the vehicle dynamics to guarantee that the trajectory is feasible and also that the capabilities of the vehicle are fully exploited; (2) using an appropriate cost-to-go (CTG) function to account for the discarded tail of the trajectory. In this paper we describe the experimental evaluation of a RH trajectory optimization scheme with a CTG function which approximates the value function associated with the minimum time optimal trajectory planning problem. The paper describes how the CTG function is computed; how the system is integrated; and finally describes the experimental demonstration of the guidance scheme. The experiments were performed in our Interactive Guidance and Control Laboratory which combines state of the art software architecture with a customized miniature helicopter.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2009.5400429</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.2978-2983 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_5400429 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fasteners Helicopters Laboratories Mobile robots Navigation Remotely operated vehicles Software architecture Tail Trajectory Vehicle dynamics |
title | Experimental demonstration of an online trajectory optimization scheme using approximate spatial value functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20demonstration%20of%20an%20online%20trajectory%20optimization%20scheme%20using%20approximate%20spatial%20value%20functions&rft.btitle=Proceedings%20of%20the%2048h%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20held%20jointly%20with%202009%2028th%20Chinese%20Control%20Conference&rft.au=Dadkhah,%20N.&rft.date=2009-12&rft.spage=2978&rft.epage=2983&rft.pages=2978-2983&rft.issn=0191-2216&rft.isbn=9781424438716&rft.isbn_list=1424438713&rft_id=info:doi/10.1109/CDC.2009.5400429&rft_dat=%3Cieee_6IE%3E5400429%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438723&rft.eisbn_list=1424438721&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5400429&rfr_iscdi=true |