Parameterization of traffic flow using Sammon-Fuzzy clustering
Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | |
creator | Deshpande, Jaidev Dande, Ketan Deshpande, Varun Abhyankar, Aditya |
description | Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions. |
doi_str_mv | 10.1109/ICVES.2009.5400320 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5400320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5400320</ieee_id><sourcerecordid>5400320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-679f58199654a074e82df679d02ba68ee56c825039cdf29909c993d95a2376ab3</originalsourceid><addsrcrecordid>eNpVUNtKw0AUXJGCWvMD-rI_kHr2mpwXQUKrhYJCi6_lNNktK7lILkjz9TbYF-dlmGHOYRjGHgQshAB8Wmefy-1CAuDCaAAl4YpFmKRCS62N1kpd_9PSztjdFEfAxOgbFnXdF5yhjRIgbtnzB7VUud61YaQ-NDVvPO9b8j7k3JfNDx-6UB_5lqqqqePVMI4nnpdDN13Ux3s281R2LrrwnO1Wy132Fm_eX9fZyyYOCH1sE_QmFYjWaIJEu1QW_mwWIA9kU-eMzVNpQGFeeDl1zRFVgYakSiwd1Jw9_r0Nzrn9dxsqak_7ywLqF0G_TC0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</creator><creatorcontrib>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</creatorcontrib><description>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</description><identifier>ISBN: 9781424454426</identifier><identifier>ISBN: 1424454425</identifier><identifier>EISBN: 9781424454433</identifier><identifier>EISBN: 9781424454419</identifier><identifier>EISBN: 1424454433</identifier><identifier>EISBN: 1424454417</identifier><identifier>DOI: 10.1109/ICVES.2009.5400320</identifier><identifier>LCCN: 2009909754</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Clustering algorithms ; Fluid flow measurement ; Global Positioning System ; Organizing ; Sampling methods ; Time measurement ; Traffic control ; Vehicles</subject><ispartof>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2009, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5400320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5400320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deshpande, Jaidev</creatorcontrib><creatorcontrib>Dande, Ketan</creatorcontrib><creatorcontrib>Deshpande, Varun</creatorcontrib><creatorcontrib>Abhyankar, Aditya</creatorcontrib><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><title>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES)</title><addtitle>ICVES</addtitle><description>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</description><subject>Cities and towns</subject><subject>Clustering algorithms</subject><subject>Fluid flow measurement</subject><subject>Global Positioning System</subject><subject>Organizing</subject><subject>Sampling methods</subject><subject>Time measurement</subject><subject>Traffic control</subject><subject>Vehicles</subject><isbn>9781424454426</isbn><isbn>1424454425</isbn><isbn>9781424454433</isbn><isbn>9781424454419</isbn><isbn>1424454433</isbn><isbn>1424454417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKw0AUXJGCWvMD-rI_kHr2mpwXQUKrhYJCi6_lNNktK7lILkjz9TbYF-dlmGHOYRjGHgQshAB8Wmefy-1CAuDCaAAl4YpFmKRCS62N1kpd_9PSztjdFEfAxOgbFnXdF5yhjRIgbtnzB7VUud61YaQ-NDVvPO9b8j7k3JfNDx-6UB_5lqqqqePVMI4nnpdDN13Ux3s281R2LrrwnO1Wy132Fm_eX9fZyyYOCH1sE_QmFYjWaIJEu1QW_mwWIA9kU-eMzVNpQGFeeDl1zRFVgYakSiwd1Jw9_r0Nzrn9dxsqak_7ywLqF0G_TC0</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Deshpande, Jaidev</creator><creator>Dande, Ketan</creator><creator>Deshpande, Varun</creator><creator>Abhyankar, Aditya</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><author>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-679f58199654a074e82df679d02ba68ee56c825039cdf29909c993d95a2376ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cities and towns</topic><topic>Clustering algorithms</topic><topic>Fluid flow measurement</topic><topic>Global Positioning System</topic><topic>Organizing</topic><topic>Sampling methods</topic><topic>Time measurement</topic><topic>Traffic control</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Jaidev</creatorcontrib><creatorcontrib>Dande, Ketan</creatorcontrib><creatorcontrib>Deshpande, Varun</creatorcontrib><creatorcontrib>Abhyankar, Aditya</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deshpande, Jaidev</au><au>Dande, Ketan</au><au>Deshpande, Varun</au><au>Abhyankar, Aditya</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameterization of traffic flow using Sammon-Fuzzy clustering</atitle><btitle>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES)</btitle><stitle>ICVES</stitle><date>2009-11</date><risdate>2009</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><isbn>9781424454426</isbn><isbn>1424454425</isbn><eisbn>9781424454433</eisbn><eisbn>9781424454419</eisbn><eisbn>1424454433</eisbn><eisbn>1424454417</eisbn><abstract>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICVES.2009.5400320</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424454426 |
ispartof | 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2009, p.146-150 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5400320 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cities and towns Clustering algorithms Fluid flow measurement Global Positioning System Organizing Sampling methods Time measurement Traffic control Vehicles |
title | Parameterization of traffic flow using Sammon-Fuzzy clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameterization%20of%20traffic%20flow%20using%20Sammon-Fuzzy%20clustering&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Vehicular%20Electronics%20and%20Safety%20(ICVES)&rft.au=Deshpande,%20Jaidev&rft.date=2009-11&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.isbn=9781424454426&rft.isbn_list=1424454425&rft_id=info:doi/10.1109/ICVES.2009.5400320&rft_dat=%3Cieee_6IE%3E5400320%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424454433&rft.eisbn_list=9781424454419&rft.eisbn_list=1424454433&rft.eisbn_list=1424454417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5400320&rfr_iscdi=true |