Parameterization of traffic flow using Sammon-Fuzzy clustering

Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deshpande, Jaidev, Dande, Ketan, Deshpande, Varun, Abhyankar, Aditya
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 146
container_title
container_volume
creator Deshpande, Jaidev
Dande, Ketan
Deshpande, Varun
Abhyankar, Aditya
description Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.
doi_str_mv 10.1109/ICVES.2009.5400320
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5400320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5400320</ieee_id><sourcerecordid>5400320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-679f58199654a074e82df679d02ba68ee56c825039cdf29909c993d95a2376ab3</originalsourceid><addsrcrecordid>eNpVUNtKw0AUXJGCWvMD-rI_kHr2mpwXQUKrhYJCi6_lNNktK7lILkjz9TbYF-dlmGHOYRjGHgQshAB8Wmefy-1CAuDCaAAl4YpFmKRCS62N1kpd_9PSztjdFEfAxOgbFnXdF5yhjRIgbtnzB7VUud61YaQ-NDVvPO9b8j7k3JfNDx-6UB_5lqqqqePVMI4nnpdDN13Ux3s281R2LrrwnO1Wy132Fm_eX9fZyyYOCH1sE_QmFYjWaIJEu1QW_mwWIA9kU-eMzVNpQGFeeDl1zRFVgYakSiwd1Jw9_r0Nzrn9dxsqak_7ywLqF0G_TC0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</creator><creatorcontrib>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</creatorcontrib><description>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</description><identifier>ISBN: 9781424454426</identifier><identifier>ISBN: 1424454425</identifier><identifier>EISBN: 9781424454433</identifier><identifier>EISBN: 9781424454419</identifier><identifier>EISBN: 1424454433</identifier><identifier>EISBN: 1424454417</identifier><identifier>DOI: 10.1109/ICVES.2009.5400320</identifier><identifier>LCCN: 2009909754</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Clustering algorithms ; Fluid flow measurement ; Global Positioning System ; Organizing ; Sampling methods ; Time measurement ; Traffic control ; Vehicles</subject><ispartof>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2009, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5400320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5400320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deshpande, Jaidev</creatorcontrib><creatorcontrib>Dande, Ketan</creatorcontrib><creatorcontrib>Deshpande, Varun</creatorcontrib><creatorcontrib>Abhyankar, Aditya</creatorcontrib><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><title>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES)</title><addtitle>ICVES</addtitle><description>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</description><subject>Cities and towns</subject><subject>Clustering algorithms</subject><subject>Fluid flow measurement</subject><subject>Global Positioning System</subject><subject>Organizing</subject><subject>Sampling methods</subject><subject>Time measurement</subject><subject>Traffic control</subject><subject>Vehicles</subject><isbn>9781424454426</isbn><isbn>1424454425</isbn><isbn>9781424454433</isbn><isbn>9781424454419</isbn><isbn>1424454433</isbn><isbn>1424454417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKw0AUXJGCWvMD-rI_kHr2mpwXQUKrhYJCi6_lNNktK7lILkjz9TbYF-dlmGHOYRjGHgQshAB8Wmefy-1CAuDCaAAl4YpFmKRCS62N1kpd_9PSztjdFEfAxOgbFnXdF5yhjRIgbtnzB7VUud61YaQ-NDVvPO9b8j7k3JfNDx-6UB_5lqqqqePVMI4nnpdDN13Ux3s281R2LrrwnO1Wy132Fm_eX9fZyyYOCH1sE_QmFYjWaIJEu1QW_mwWIA9kU-eMzVNpQGFeeDl1zRFVgYakSiwd1Jw9_r0Nzrn9dxsqak_7ywLqF0G_TC0</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Deshpande, Jaidev</creator><creator>Dande, Ketan</creator><creator>Deshpande, Varun</creator><creator>Abhyankar, Aditya</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Parameterization of traffic flow using Sammon-Fuzzy clustering</title><author>Deshpande, Jaidev ; Dande, Ketan ; Deshpande, Varun ; Abhyankar, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-679f58199654a074e82df679d02ba68ee56c825039cdf29909c993d95a2376ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cities and towns</topic><topic>Clustering algorithms</topic><topic>Fluid flow measurement</topic><topic>Global Positioning System</topic><topic>Organizing</topic><topic>Sampling methods</topic><topic>Time measurement</topic><topic>Traffic control</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Jaidev</creatorcontrib><creatorcontrib>Dande, Ketan</creatorcontrib><creatorcontrib>Deshpande, Varun</creatorcontrib><creatorcontrib>Abhyankar, Aditya</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deshpande, Jaidev</au><au>Dande, Ketan</au><au>Deshpande, Varun</au><au>Abhyankar, Aditya</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameterization of traffic flow using Sammon-Fuzzy clustering</atitle><btitle>2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES)</btitle><stitle>ICVES</stitle><date>2009-11</date><risdate>2009</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><isbn>9781424454426</isbn><isbn>1424454425</isbn><eisbn>9781424454433</eisbn><eisbn>9781424454419</eisbn><eisbn>1424454433</eisbn><eisbn>1424454417</eisbn><abstract>Modelling the traffic conditions has become necessary in the modern connected society. We have attempted to use clustering algorithms to classify traffic flow in and around Pune city into classes representing geographical locations of sampling of the data. The algorithm employs Sammon's mapping along with fuzzy clustering algorithms to cluster the data. Such high-end parameterization of traffic flow can help in better control and real-time modelling methods. The algorithm is applied to two different databases - traffic inside the city and traffic outside it and approximately 95% accuracy is obtained across vivid conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICVES.2009.5400320</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424454426
ispartof 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2009, p.146-150
issn
language eng
recordid cdi_ieee_primary_5400320
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cities and towns
Clustering algorithms
Fluid flow measurement
Global Positioning System
Organizing
Sampling methods
Time measurement
Traffic control
Vehicles
title Parameterization of traffic flow using Sammon-Fuzzy clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameterization%20of%20traffic%20flow%20using%20Sammon-Fuzzy%20clustering&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Vehicular%20Electronics%20and%20Safety%20(ICVES)&rft.au=Deshpande,%20Jaidev&rft.date=2009-11&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.isbn=9781424454426&rft.isbn_list=1424454425&rft_id=info:doi/10.1109/ICVES.2009.5400320&rft_dat=%3Cieee_6IE%3E5400320%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424454433&rft.eisbn_list=9781424454419&rft.eisbn_list=1424454433&rft.eisbn_list=1424454417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5400320&rfr_iscdi=true