Function approximation for the deterministic Hamilton-Jacobi-Bellman equation

Based on Gaussian basis functions, a new method for calculating the Hamilton-Jacobi-Bellman equation for deterministic continuous-time and continuous-valued optimal control problems is proposed. A semi-Lagrangian discretization scheme is used to obtain a discrete-time finite-state approximation of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rungger, M., Stursberg, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2273
container_issue
container_start_page 2268
container_title
container_volume
creator Rungger, M.
Stursberg, O.
description Based on Gaussian basis functions, a new method for calculating the Hamilton-Jacobi-Bellman equation for deterministic continuous-time and continuous-valued optimal control problems is proposed. A semi-Lagrangian discretization scheme is used to obtain a discrete-time finite-state approximation of the continuous dynamics. The value function of the discretized system is approximated by a Gaussian network. Limit behavior analysis provides a proof of convergence for the scheme. The performance of the presented approach is demonstrated for an underpowered inverted pendulum as numerical example. Furthermore, a comparison to the approximation by continuous piecewise affine functions (the current state of the art) shows the benefits of the approximation technique proposed here.
doi_str_mv 10.1109/CDC.2009.5400068
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5400068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5400068</ieee_id><sourcerecordid>5400068</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ce0d085915071cfbbe3cf09a551765b575d0131d193e052056753783fe045653</originalsourceid><addsrcrecordid>eNpVkE1PwzAQRI2gEqX0jsQlf8BhN87a8RECpaAiLnCuHGcjjPJFkkrw76lKL5xG7zBPoxHiCiFGBHuT3-dxAmBjSgFAZydiaU2GaZKmKjOJOv3HqM_EHNCiTBLUMzE3VuoUrMZzcTGOn3tFBlrPxctq1_opdG3k-n7ovkPjDlR1QzR9cFTyxEMT2jBOwUdr14R66lr57HxXBHnHdd24NuKv3aF2KWaVq0deHnMh3lcPb_labl4fn_LbjQxoaJLGM5SQkUUCg74qCla-AuuI0GgqyFAJqLBEqxgoAdKGlMlUxZCSJrUQ13_ewMzbftivHn62x2fUL6nrUeY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Function approximation for the deterministic Hamilton-Jacobi-Bellman equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rungger, M. ; Stursberg, O.</creator><creatorcontrib>Rungger, M. ; Stursberg, O.</creatorcontrib><description>Based on Gaussian basis functions, a new method for calculating the Hamilton-Jacobi-Bellman equation for deterministic continuous-time and continuous-valued optimal control problems is proposed. A semi-Lagrangian discretization scheme is used to obtain a discrete-time finite-state approximation of the continuous dynamics. The value function of the discretized system is approximated by a Gaussian network. Limit behavior analysis provides a proof of convergence for the scheme. The performance of the presented approach is demonstrated for an underpowered inverted pendulum as numerical example. Furthermore, a comparison to the approximation by continuous piecewise affine functions (the current state of the art) shows the benefits of the approximation technique proposed here.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424438716</identifier><identifier>ISBN: 1424438713</identifier><identifier>EISBN: 9781424438723</identifier><identifier>EISBN: 1424438721</identifier><identifier>DOI: 10.1109/CDC.2009.5400068</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Continuous time systems ; Convergence ; Cost function ; Differential equations ; Dynamic programming ; Function approximation ; Optimal control ; Partial differential equations ; State feedback ; State-space methods</subject><ispartof>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.2268-2273</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5400068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5400068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rungger, M.</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><title>Function approximation for the deterministic Hamilton-Jacobi-Bellman equation</title><title>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</title><addtitle>CDC</addtitle><description>Based on Gaussian basis functions, a new method for calculating the Hamilton-Jacobi-Bellman equation for deterministic continuous-time and continuous-valued optimal control problems is proposed. A semi-Lagrangian discretization scheme is used to obtain a discrete-time finite-state approximation of the continuous dynamics. The value function of the discretized system is approximated by a Gaussian network. Limit behavior analysis provides a proof of convergence for the scheme. The performance of the presented approach is demonstrated for an underpowered inverted pendulum as numerical example. Furthermore, a comparison to the approximation by continuous piecewise affine functions (the current state of the art) shows the benefits of the approximation technique proposed here.</description><subject>Continuous time systems</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Function approximation</subject><subject>Optimal control</subject><subject>Partial differential equations</subject><subject>State feedback</subject><subject>State-space methods</subject><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><isbn>9781424438723</isbn><isbn>1424438721</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1PwzAQRI2gEqX0jsQlf8BhN87a8RECpaAiLnCuHGcjjPJFkkrw76lKL5xG7zBPoxHiCiFGBHuT3-dxAmBjSgFAZydiaU2GaZKmKjOJOv3HqM_EHNCiTBLUMzE3VuoUrMZzcTGOn3tFBlrPxctq1_opdG3k-n7ovkPjDlR1QzR9cFTyxEMT2jBOwUdr14R66lr57HxXBHnHdd24NuKv3aF2KWaVq0deHnMh3lcPb_labl4fn_LbjQxoaJLGM5SQkUUCg74qCla-AuuI0GgqyFAJqLBEqxgoAdKGlMlUxZCSJrUQ13_ewMzbftivHn62x2fUL6nrUeY</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Rungger, M.</creator><creator>Stursberg, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Function approximation for the deterministic Hamilton-Jacobi-Bellman equation</title><author>Rungger, M. ; Stursberg, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ce0d085915071cfbbe3cf09a551765b575d0131d193e052056753783fe045653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Continuous time systems</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Function approximation</topic><topic>Optimal control</topic><topic>Partial differential equations</topic><topic>State feedback</topic><topic>State-space methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Rungger, M.</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rungger, M.</au><au>Stursberg, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Function approximation for the deterministic Hamilton-Jacobi-Bellman equation</atitle><btitle>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</btitle><stitle>CDC</stitle><date>2009-12</date><risdate>2009</risdate><spage>2268</spage><epage>2273</epage><pages>2268-2273</pages><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><eisbn>9781424438723</eisbn><eisbn>1424438721</eisbn><abstract>Based on Gaussian basis functions, a new method for calculating the Hamilton-Jacobi-Bellman equation for deterministic continuous-time and continuous-valued optimal control problems is proposed. A semi-Lagrangian discretization scheme is used to obtain a discrete-time finite-state approximation of the continuous dynamics. The value function of the discretized system is approximated by a Gaussian network. Limit behavior analysis provides a proof of convergence for the scheme. The performance of the presented approach is demonstrated for an underpowered inverted pendulum as numerical example. Furthermore, a comparison to the approximation by continuous piecewise affine functions (the current state of the art) shows the benefits of the approximation technique proposed here.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2009.5400068</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.2268-2273
issn 0191-2216
language eng
recordid cdi_ieee_primary_5400068
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Continuous time systems
Convergence
Cost function
Differential equations
Dynamic programming
Function approximation
Optimal control
Partial differential equations
State feedback
State-space methods
title Function approximation for the deterministic Hamilton-Jacobi-Bellman equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Function%20approximation%20for%20the%20deterministic%20Hamilton-Jacobi-Bellman%20equation&rft.btitle=Proceedings%20of%20the%2048h%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20held%20jointly%20with%202009%2028th%20Chinese%20Control%20Conference&rft.au=Rungger,%20M.&rft.date=2009-12&rft.spage=2268&rft.epage=2273&rft.pages=2268-2273&rft.issn=0191-2216&rft.isbn=9781424438716&rft.isbn_list=1424438713&rft_id=info:doi/10.1109/CDC.2009.5400068&rft_dat=%3Cieee_6IE%3E5400068%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438723&rft.eisbn_list=1424438721&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5400068&rfr_iscdi=true