Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback

Previous inverse optimal adaptive controllers (IOACs) have been developed that can handle structured (i.e., linear in the parameters (LP)) uncertainty for a particular class of nonlinear systems. A full-state feedback IOAC is developed in the companion Part I paper for Euler-Lagrange systems with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dupree, K., Johnson, M., Patre, P.M., Dixon, W.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue
container_start_page 327
container_title
container_volume
creator Dupree, K.
Johnson, M.
Patre, P.M.
Dixon, W.E.
description Previous inverse optimal adaptive controllers (IOACs) have been developed that can handle structured (i.e., linear in the parameters (LP)) uncertainty for a particular class of nonlinear systems. A full-state feedback IOAC is developed in the companion Part I paper for Euler-Lagrange systems with an uncertain time varying inertia matrix. In this paper, an output feedback IOAC is developed to asymptotically minimize a meaningful performance index while the generalized coordinates of a nonlinear Euler-Lagrange system asymptotically track a desired time-varying trajectory despite LP uncertainty. A Lyapunov analysis is provided to examine the stability of the developed output feedback optimal controller, and preliminary experimental results illustrate the performance of the controller.
doi_str_mv 10.1109/CDC.2009.5399758
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5399758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5399758</ieee_id><sourcerecordid>5399758</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-233b89a77be13e4db5f1598f769b7652f7bced7644750f00c75ce1b69b60e0a03</originalsourceid><addsrcrecordid>eNpVkE1Lw0AURUe0YK3dC27mB5j45jvjTtKqgUI36rbMpG9KNE3CZCr031uwG1eXy4EL5xJyxyBnDOxjuShzDmBzJaw1qrggc2sKJrmUojBcXP7rTF-RKTDLMs6ZnpCpsZmWYDW7Jjfj-AUABWg9JZ9V94NxRNoPqdm7ltZ9l2Lf0j5QR7u-a5sOXaTLQ4sxW7lddN0O6XgcE-4f6OBiolX1RNeHNBwSDYhb7-rvWzIJrh1xfs4Z-XhZvpdv2Wr9WpXPq6xhRqWMC-EL64zxyATKrVeBKVsEo603WvFgfI1bo6U0CgJAbVSNzJ-oBgQHYkbu_3YbRNwM8aQQj5vzReIXi1JVRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dupree, K. ; Johnson, M. ; Patre, P.M. ; Dixon, W.E.</creator><creatorcontrib>Dupree, K. ; Johnson, M. ; Patre, P.M. ; Dixon, W.E.</creatorcontrib><description>Previous inverse optimal adaptive controllers (IOACs) have been developed that can handle structured (i.e., linear in the parameters (LP)) uncertainty for a particular class of nonlinear systems. A full-state feedback IOAC is developed in the companion Part I paper for Euler-Lagrange systems with an uncertain time varying inertia matrix. In this paper, an output feedback IOAC is developed to asymptotically minimize a meaningful performance index while the generalized coordinates of a nonlinear Euler-Lagrange system asymptotically track a desired time-varying trajectory despite LP uncertainty. A Lyapunov analysis is provided to examine the stability of the developed output feedback optimal controller, and preliminary experimental results illustrate the performance of the controller.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424438716</identifier><identifier>ISBN: 1424438713</identifier><identifier>EISBN: 9781424438723</identifier><identifier>EISBN: 1424438721</identifier><identifier>DOI: 10.1109/CDC.2009.5399758</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Control systems ; Nonlinear control systems ; Nonlinear systems ; Optimal control ; Output feedback ; Performance analysis ; Programmable control ; Time varying systems ; Uncertainty</subject><ispartof>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.327-332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5399758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5399758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dupree, K.</creatorcontrib><creatorcontrib>Johnson, M.</creatorcontrib><creatorcontrib>Patre, P.M.</creatorcontrib><creatorcontrib>Dixon, W.E.</creatorcontrib><title>Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback</title><title>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</title><addtitle>CDC</addtitle><description>Previous inverse optimal adaptive controllers (IOACs) have been developed that can handle structured (i.e., linear in the parameters (LP)) uncertainty for a particular class of nonlinear systems. A full-state feedback IOAC is developed in the companion Part I paper for Euler-Lagrange systems with an uncertain time varying inertia matrix. In this paper, an output feedback IOAC is developed to asymptotically minimize a meaningful performance index while the generalized coordinates of a nonlinear Euler-Lagrange system asymptotically track a desired time-varying trajectory despite LP uncertainty. A Lyapunov analysis is provided to examine the stability of the developed output feedback optimal controller, and preliminary experimental results illustrate the performance of the controller.</description><subject>Adaptive control</subject><subject>Control systems</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Output feedback</subject><subject>Performance analysis</subject><subject>Programmable control</subject><subject>Time varying systems</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><isbn>9781424438723</isbn><isbn>1424438721</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1Lw0AURUe0YK3dC27mB5j45jvjTtKqgUI36rbMpG9KNE3CZCr031uwG1eXy4EL5xJyxyBnDOxjuShzDmBzJaw1qrggc2sKJrmUojBcXP7rTF-RKTDLMs6ZnpCpsZmWYDW7Jjfj-AUABWg9JZ9V94NxRNoPqdm7ltZ9l2Lf0j5QR7u-a5sOXaTLQ4sxW7lddN0O6XgcE-4f6OBiolX1RNeHNBwSDYhb7-rvWzIJrh1xfs4Z-XhZvpdv2Wr9WpXPq6xhRqWMC-EL64zxyATKrVeBKVsEo603WvFgfI1bo6U0CgJAbVSNzJ-oBgQHYkbu_3YbRNwM8aQQj5vzReIXi1JVRg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Dupree, K.</creator><creator>Johnson, M.</creator><creator>Patre, P.M.</creator><creator>Dixon, W.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200912</creationdate><title>Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback</title><author>Dupree, K. ; Johnson, M. ; Patre, P.M. ; Dixon, W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-233b89a77be13e4db5f1598f769b7652f7bced7644750f00c75ce1b69b60e0a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Control systems</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Output feedback</topic><topic>Performance analysis</topic><topic>Programmable control</topic><topic>Time varying systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Dupree, K.</creatorcontrib><creatorcontrib>Johnson, M.</creatorcontrib><creatorcontrib>Patre, P.M.</creatorcontrib><creatorcontrib>Dixon, W.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dupree, K.</au><au>Johnson, M.</au><au>Patre, P.M.</au><au>Dixon, W.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback</atitle><btitle>Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference</btitle><stitle>CDC</stitle><date>2009-12</date><risdate>2009</risdate><spage>327</spage><epage>332</epage><pages>327-332</pages><issn>0191-2216</issn><isbn>9781424438716</isbn><isbn>1424438713</isbn><eisbn>9781424438723</eisbn><eisbn>1424438721</eisbn><abstract>Previous inverse optimal adaptive controllers (IOACs) have been developed that can handle structured (i.e., linear in the parameters (LP)) uncertainty for a particular class of nonlinear systems. A full-state feedback IOAC is developed in the companion Part I paper for Euler-Lagrange systems with an uncertain time varying inertia matrix. In this paper, an output feedback IOAC is developed to asymptotically minimize a meaningful performance index while the generalized coordinates of a nonlinear Euler-Lagrange system asymptotically track a desired time-varying trajectory despite LP uncertainty. A Lyapunov analysis is provided to examine the stability of the developed output feedback optimal controller, and preliminary experimental results illustrate the performance of the controller.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2009.5399758</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, p.327-332
issn 0191-2216
language eng
recordid cdi_ieee_primary_5399758
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Control systems
Nonlinear control systems
Nonlinear systems
Optimal control
Output feedback
Performance analysis
Programmable control
Time varying systems
Uncertainty
title Inverse optimal control of a nonlinear Euler-Lagrange system, part II: Output feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inverse%20optimal%20control%20of%20a%20nonlinear%20Euler-Lagrange%20system,%20part%20II:%20Output%20feedback&rft.btitle=Proceedings%20of%20the%2048h%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20held%20jointly%20with%202009%2028th%20Chinese%20Control%20Conference&rft.au=Dupree,%20K.&rft.date=2009-12&rft.spage=327&rft.epage=332&rft.pages=327-332&rft.issn=0191-2216&rft.isbn=9781424438716&rft.isbn_list=1424438713&rft_id=info:doi/10.1109/CDC.2009.5399758&rft_dat=%3Cieee_6IE%3E5399758%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438723&rft.eisbn_list=1424438721&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5399758&rfr_iscdi=true