Improvements in Video-based Automated System for Iris Recognition (VASIR)

Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yooyoung Lee, Micheals, R.J., Phillips, P.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Yooyoung Lee
Micheals, R.J.
Phillips, P.J.
description Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.
doi_str_mv 10.1109/WMVC.2009.5399237
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5399237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5399237</ieee_id><sourcerecordid>5399237</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-16f55df75af4d07761674d4b04b44a99fe7ab67f25c15f3fce293faa47d945b93</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_cBxJc86kNr0vzS9PdYhn8KE2Eb9XGkTSIR244mCvv2VpzHwd3BcQ9HyDVnKecM799e6lWaMYapFIiZUGdkziEDkICI5_9BMpbPyPy3iBOL4oIsQ_hgE0BmghWXpKq6wzh82872MVDf09obOySNDtbQ8isOnY6T2x5DtB11w0ir0Qe6se3w3vvoh57e1uW22txdkZnTn8EuT7ogu8eH3eo5Wb8-VatynXhkMeG5k9I4JbUDw5TKea7AQMOgAdCIzird5MplsuXSCdfaDIXTGpRBkA2KBbn5m_XW2v1h9J0ej_vTDeIH-NdOZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</creator><creatorcontrib>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</creatorcontrib><description>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</description><identifier>ISBN: 1424455006</identifier><identifier>ISBN: 9781424455003</identifier><identifier>EISBN: 1424454999</identifier><identifier>EISBN: 9781424455010</identifier><identifier>EISBN: 9781424454990</identifier><identifier>EISBN: 1424455014</identifier><identifier>DOI: 10.1109/WMVC.2009.5399237</identifier><identifier>LCCN: 2009909988</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Computer vision ; Drives ; Eyelids ; Eyes ; Humans ; Image edge detection ; Image segmentation ; Iris recognition ; NIST</subject><ispartof>2009 Workshop on Motion and Video Computing (WMVC), 2009, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5399237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5399237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yooyoung Lee</creatorcontrib><creatorcontrib>Micheals, R.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><title>2009 Workshop on Motion and Video Computing (WMVC)</title><addtitle>WMVC</addtitle><description>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</description><subject>Biometrics</subject><subject>Computer vision</subject><subject>Drives</subject><subject>Eyelids</subject><subject>Eyes</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>NIST</subject><isbn>1424455006</isbn><isbn>9781424455003</isbn><isbn>1424454999</isbn><isbn>9781424455010</isbn><isbn>9781424454990</isbn><isbn>1424455014</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_cBxJc86kNr0vzS9PdYhn8KE2Eb9XGkTSIR244mCvv2VpzHwd3BcQ9HyDVnKecM799e6lWaMYapFIiZUGdkziEDkICI5_9BMpbPyPy3iBOL4oIsQ_hgE0BmghWXpKq6wzh82872MVDf09obOySNDtbQ8isOnY6T2x5DtB11w0ir0Qe6se3w3vvoh57e1uW22txdkZnTn8EuT7ogu8eH3eo5Wb8-VatynXhkMeG5k9I4JbUDw5TKea7AQMOgAdCIzird5MplsuXSCdfaDIXTGpRBkA2KBbn5m_XW2v1h9J0ej_vTDeIH-NdOZQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Yooyoung Lee</creator><creator>Micheals, R.J.</creator><creator>Phillips, P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><author>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-16f55df75af4d07761674d4b04b44a99fe7ab67f25c15f3fce293faa47d945b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biometrics</topic><topic>Computer vision</topic><topic>Drives</topic><topic>Eyelids</topic><topic>Eyes</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>NIST</topic><toplevel>online_resources</toplevel><creatorcontrib>Yooyoung Lee</creatorcontrib><creatorcontrib>Micheals, R.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yooyoung Lee</au><au>Micheals, R.J.</au><au>Phillips, P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvements in Video-based Automated System for Iris Recognition (VASIR)</atitle><btitle>2009 Workshop on Motion and Video Computing (WMVC)</btitle><stitle>WMVC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1424455006</isbn><isbn>9781424455003</isbn><eisbn>1424454999</eisbn><eisbn>9781424455010</eisbn><eisbn>9781424454990</eisbn><eisbn>1424455014</eisbn><abstract>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</abstract><pub>IEEE</pub><doi>10.1109/WMVC.2009.5399237</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424455006
ispartof 2009 Workshop on Motion and Video Computing (WMVC), 2009, p.1-8
issn
language eng
recordid cdi_ieee_primary_5399237
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Computer vision
Drives
Eyelids
Eyes
Humans
Image edge detection
Image segmentation
Iris recognition
NIST
title Improvements in Video-based Automated System for Iris Recognition (VASIR)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvements%20in%20Video-based%20Automated%20System%20for%20Iris%20Recognition%20(VASIR)&rft.btitle=2009%20Workshop%20on%20Motion%20and%20Video%20Computing%20(WMVC)&rft.au=Yooyoung%20Lee&rft.date=2009-12&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1424455006&rft.isbn_list=9781424455003&rft_id=info:doi/10.1109/WMVC.2009.5399237&rft_dat=%3Cieee_6IE%3E5399237%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424454999&rft.eisbn_list=9781424455010&rft.eisbn_list=9781424454990&rft.eisbn_list=1424455014&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5399237&rfr_iscdi=true