Improvements in Video-based Automated System for Iris Recognition (VASIR)
Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yooyoung Lee Micheals, R.J. Phillips, P.J. |
description | Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection. |
doi_str_mv | 10.1109/WMVC.2009.5399237 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5399237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5399237</ieee_id><sourcerecordid>5399237</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-16f55df75af4d07761674d4b04b44a99fe7ab67f25c15f3fce293faa47d945b93</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_cBxJc86kNr0vzS9PdYhn8KE2Eb9XGkTSIR244mCvv2VpzHwd3BcQ9HyDVnKecM799e6lWaMYapFIiZUGdkziEDkICI5_9BMpbPyPy3iBOL4oIsQ_hgE0BmghWXpKq6wzh82872MVDf09obOySNDtbQ8isOnY6T2x5DtB11w0ir0Qe6se3w3vvoh57e1uW22txdkZnTn8EuT7ogu8eH3eo5Wb8-VatynXhkMeG5k9I4JbUDw5TKea7AQMOgAdCIzird5MplsuXSCdfaDIXTGpRBkA2KBbn5m_XW2v1h9J0ej_vTDeIH-NdOZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</creator><creatorcontrib>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</creatorcontrib><description>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</description><identifier>ISBN: 1424455006</identifier><identifier>ISBN: 9781424455003</identifier><identifier>EISBN: 1424454999</identifier><identifier>EISBN: 9781424455010</identifier><identifier>EISBN: 9781424454990</identifier><identifier>EISBN: 1424455014</identifier><identifier>DOI: 10.1109/WMVC.2009.5399237</identifier><identifier>LCCN: 2009909988</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Computer vision ; Drives ; Eyelids ; Eyes ; Humans ; Image edge detection ; Image segmentation ; Iris recognition ; NIST</subject><ispartof>2009 Workshop on Motion and Video Computing (WMVC), 2009, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5399237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5399237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yooyoung Lee</creatorcontrib><creatorcontrib>Micheals, R.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><title>2009 Workshop on Motion and Video Computing (WMVC)</title><addtitle>WMVC</addtitle><description>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</description><subject>Biometrics</subject><subject>Computer vision</subject><subject>Drives</subject><subject>Eyelids</subject><subject>Eyes</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>NIST</subject><isbn>1424455006</isbn><isbn>9781424455003</isbn><isbn>1424454999</isbn><isbn>9781424455010</isbn><isbn>9781424454990</isbn><isbn>1424455014</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_cBxJc86kNr0vzS9PdYhn8KE2Eb9XGkTSIR244mCvv2VpzHwd3BcQ9HyDVnKecM799e6lWaMYapFIiZUGdkziEDkICI5_9BMpbPyPy3iBOL4oIsQ_hgE0BmghWXpKq6wzh82872MVDf09obOySNDtbQ8isOnY6T2x5DtB11w0ir0Qe6se3w3vvoh57e1uW22txdkZnTn8EuT7ogu8eH3eo5Wb8-VatynXhkMeG5k9I4JbUDw5TKea7AQMOgAdCIzird5MplsuXSCdfaDIXTGpRBkA2KBbn5m_XW2v1h9J0ej_vTDeIH-NdOZQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Yooyoung Lee</creator><creator>Micheals, R.J.</creator><creator>Phillips, P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Improvements in Video-based Automated System for Iris Recognition (VASIR)</title><author>Yooyoung Lee ; Micheals, R.J. ; Phillips, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-16f55df75af4d07761674d4b04b44a99fe7ab67f25c15f3fce293faa47d945b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biometrics</topic><topic>Computer vision</topic><topic>Drives</topic><topic>Eyelids</topic><topic>Eyes</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>NIST</topic><toplevel>online_resources</toplevel><creatorcontrib>Yooyoung Lee</creatorcontrib><creatorcontrib>Micheals, R.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yooyoung Lee</au><au>Micheals, R.J.</au><au>Phillips, P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvements in Video-based Automated System for Iris Recognition (VASIR)</atitle><btitle>2009 Workshop on Motion and Video Computing (WMVC)</btitle><stitle>WMVC</stitle><date>2009-12</date><risdate>2009</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1424455006</isbn><isbn>9781424455003</isbn><eisbn>1424454999</eisbn><eisbn>9781424455010</eisbn><eisbn>9781424454990</eisbn><eisbn>1424455014</eisbn><abstract>Video-based Automated System for Iris Recognition (VASIR) performs two-eye detection, best quality image selection by adapting human vision and edge density methods, and iris verification for identifying a person. A new method of iris segmentation is implemented and evaluated that uses a combination of contour processing and Hough transform algorithms along with a new approach to eyelid detection. User-interaction is reduced by using automatic threshold selection to detect the pupil and by defining it to be a minimum boundary radius of the iris. VASIR's performance is evaluated with the MBGC datasets which were captured under unconstrained environments. The results show that the new method significantly improves the segmentation of the iris region and consequently the matching results. Our method also demonstrates that automated best image selection is nearly equivalent to human selection.</abstract><pub>IEEE</pub><doi>10.1109/WMVC.2009.5399237</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424455006 |
ispartof | 2009 Workshop on Motion and Video Computing (WMVC), 2009, p.1-8 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5399237 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biometrics Computer vision Drives Eyelids Eyes Humans Image edge detection Image segmentation Iris recognition NIST |
title | Improvements in Video-based Automated System for Iris Recognition (VASIR) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvements%20in%20Video-based%20Automated%20System%20for%20Iris%20Recognition%20(VASIR)&rft.btitle=2009%20Workshop%20on%20Motion%20and%20Video%20Computing%20(WMVC)&rft.au=Yooyoung%20Lee&rft.date=2009-12&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1424455006&rft.isbn_list=9781424455003&rft_id=info:doi/10.1109/WMVC.2009.5399237&rft_dat=%3Cieee_6IE%3E5399237%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424454999&rft.eisbn_list=9781424455010&rft.eisbn_list=9781424454990&rft.eisbn_list=1424455014&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5399237&rfr_iscdi=true |