Paired comparison-based Interactive Differential Evolution

We propose a system of Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are central to reducing Inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takagi, H., Pallez, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue
container_start_page 475
container_title
container_volume
creator Takagi, H.
Pallez, D.
description We propose a system of Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are central to reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals with each other but rather only to compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed method is superior to others from both user interface and convergence performance points of view.
doi_str_mv 10.1109/NABIC.2009.5393359
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5393359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5393359</ieee_id><sourcerecordid>5393359</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2009-1f874b8b8493a78fc82365fd3883ae4b7a274349e3b305dda847286bcf1e23e13</originalsourceid><addsrcrecordid>eNotT91KwzAYDchAN_cCetMXaE3yJUvi3aybFoZ6odfjS_sFIl070jrw7e1w5-bAOXB-GLsTvBCCu4e39VNVFpJzV2hwANpdsblQUinNNegZm589x40Afc2Ww_DNJygtgesb9viBMVGT1f3hiCkOfZd7HCah6kZKWI_xRNlzDIESdWPENtuc-vZnjH13y2YB24GWF16wr-3ms3zNd-8vVbne5fFcnItgjfLWW-UAjQ21lbDSoQFrAUl5g9IoUI7AT4uaBq0y0q58HQRJIAELdv-fG4lof0zxgOl3f_kKf091R4o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Paired comparison-based Interactive Differential Evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takagi, H. ; Pallez, D.</creator><creatorcontrib>Takagi, H. ; Pallez, D.</creatorcontrib><description>We propose a system of Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are central to reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals with each other but rather only to compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed method is superior to others from both user interface and convergence performance points of view.</description><identifier>ISBN: 1424450535</identifier><identifier>ISBN: 9781424450534</identifier><identifier>DOI: 10.1109/NABIC.2009.5393359</identifier><identifier>LCCN: 2009907135</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; Convergence ; Differential Evolution ; Evolutionary Algorithms ; Evolutionary computation ; Fatigue ; Gaussian Mixture Model ; Genetic algorithms ; IEC standards ; Interactive Evolutionary Computation ; Noise reduction ; Paired Comparison ; Quantization ; User interfaces</subject><ispartof>2009 World Congress on Nature &amp; Biologically Inspired Computing (NaBIC), 2009, p.475-480</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5393359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5393359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takagi, H.</creatorcontrib><creatorcontrib>Pallez, D.</creatorcontrib><title>Paired comparison-based Interactive Differential Evolution</title><title>2009 World Congress on Nature &amp; Biologically Inspired Computing (NaBIC)</title><addtitle>NABIC</addtitle><description>We propose a system of Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are central to reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals with each other but rather only to compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed method is superior to others from both user interface and convergence performance points of view.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>Convergence</subject><subject>Differential Evolution</subject><subject>Evolutionary Algorithms</subject><subject>Evolutionary computation</subject><subject>Fatigue</subject><subject>Gaussian Mixture Model</subject><subject>Genetic algorithms</subject><subject>IEC standards</subject><subject>Interactive Evolutionary Computation</subject><subject>Noise reduction</subject><subject>Paired Comparison</subject><subject>Quantization</subject><subject>User interfaces</subject><isbn>1424450535</isbn><isbn>9781424450534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT91KwzAYDchAN_cCetMXaE3yJUvi3aybFoZ6odfjS_sFIl070jrw7e1w5-bAOXB-GLsTvBCCu4e39VNVFpJzV2hwANpdsblQUinNNegZm589x40Afc2Ww_DNJygtgesb9viBMVGT1f3hiCkOfZd7HCah6kZKWI_xRNlzDIESdWPENtuc-vZnjH13y2YB24GWF16wr-3ms3zNd-8vVbne5fFcnItgjfLWW-UAjQ21lbDSoQFrAUl5g9IoUI7AT4uaBq0y0q58HQRJIAELdv-fG4lof0zxgOl3f_kKf091R4o</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Takagi, H.</creator><creator>Pallez, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2009</creationdate><title>Paired comparison-based Interactive Differential Evolution</title><author>Takagi, H. ; Pallez, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2009-1f874b8b8493a78fc82365fd3883ae4b7a274349e3b305dda847286bcf1e23e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>Convergence</topic><topic>Differential Evolution</topic><topic>Evolutionary Algorithms</topic><topic>Evolutionary computation</topic><topic>Fatigue</topic><topic>Gaussian Mixture Model</topic><topic>Genetic algorithms</topic><topic>IEC standards</topic><topic>Interactive Evolutionary Computation</topic><topic>Noise reduction</topic><topic>Paired Comparison</topic><topic>Quantization</topic><topic>User interfaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Takagi, H.</creatorcontrib><creatorcontrib>Pallez, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takagi, H.</au><au>Pallez, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Paired comparison-based Interactive Differential Evolution</atitle><btitle>2009 World Congress on Nature &amp; Biologically Inspired Computing (NaBIC)</btitle><stitle>NABIC</stitle><date>2009</date><risdate>2009</risdate><spage>475</spage><epage>480</epage><pages>475-480</pages><isbn>1424450535</isbn><isbn>9781424450534</isbn><abstract>We propose a system of Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are central to reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals with each other but rather only to compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed method is superior to others from both user interface and convergence performance points of view.</abstract><pub>IEEE</pub><doi>10.1109/NABIC.2009.5393359</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424450535
ispartof 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009, p.475-480
issn
language eng
recordid cdi_ieee_primary_5393359
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Algorithm design and analysis
Convergence
Differential Evolution
Evolutionary Algorithms
Evolutionary computation
Fatigue
Gaussian Mixture Model
Genetic algorithms
IEC standards
Interactive Evolutionary Computation
Noise reduction
Paired Comparison
Quantization
User interfaces
title Paired comparison-based Interactive Differential Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Paired%20comparison-based%20Interactive%20Differential%20Evolution&rft.btitle=2009%20World%20Congress%20on%20Nature%20&%20Biologically%20Inspired%20Computing%20(NaBIC)&rft.au=Takagi,%20H.&rft.date=2009&rft.spage=475&rft.epage=480&rft.pages=475-480&rft.isbn=1424450535&rft.isbn_list=9781424450534&rft_id=info:doi/10.1109/NABIC.2009.5393359&rft_dat=%3Cieee_6IE%3E5393359%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5393359&rfr_iscdi=true