Wide-band Electrical Characterization of printable nano-particle copper conductors

Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Makinen, R., Sillanpaa, H., Ostman, K., Palukuru, V., Pynttari, V., Kanerva, T., Hagberg, J., Lepisto, T., Jantunen, H., Yang, M., Laxton, P.B., Arimura, H., Ronkka, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2458
container_issue
container_start_page 2455
container_title
container_volume
creator Makinen, R.
Sillanpaa, H.
Ostman, K.
Palukuru, V.
Pynttari, V.
Kanerva, T.
Hagberg, J.
Lepisto, T.
Jantunen, H.
Yang, M.
Laxton, P.B.
Arimura, H.
Ronkka, R.
description Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.
doi_str_mv 10.1109/APMC.2009.5385482
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5385482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5385482</ieee_id><sourcerecordid>5385482</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aea92af26a0f2518c5704888177707d33bfa90b4162fe883385fb84422290f463</originalsourceid><addsrcrecordid>eNo9UM1KxDAYjD8L7q77AOKlL9A1-ZI0yXEp6w-sKKJ4XL6mCUZqW9J40Kc34OpchmFgmBlCLhhdM0bN1ebxvl4DpWYtuZZCwxFZMAFCgKYgj8kcWCVLoQQ_ISuj9J_HxOm_B2pGFjlDG1opCmdkNU3vNENILrmZk6fX0Lqywb4ttp2zKQaLXVG_YUSbXAzfmMLQF4Mvxhj6hE3nih77oRwxpmCzssM4upipbz9tGuJ0TmYeu8mtDrwkL9fb5_q23D3c3NWbXRmYkqlEhwbQQ4XUg2TaSkWF1poppahqOW88GtoIVoF3WvP8gW90XghgqBcVX5LL39zgnNvneh8Yv_aHr_gPV2tWPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</creator><creatorcontrib>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</creatorcontrib><description>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</description><identifier>ISSN: 2165-4727</identifier><identifier>ISBN: 9781424428014</identifier><identifier>ISBN: 1424428017</identifier><identifier>EISSN: 2165-4743</identifier><identifier>EISBN: 1424428025</identifier><identifier>EISBN: 9781424428021</identifier><identifier>DOI: 10.1109/APMC.2009.5385482</identifier><identifier>LCCN: 2008906702</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conducting materials ; Conductivity measurement ; Conductors ; Consumer electronics ; Copper ; Ink ; Manufacturing processes ; nano-particle ink ; nanotechnology ; printable electronics ; Printing ; Scanning electron microscopy ; Wideband</subject><ispartof>2009 Asia Pacific Microwave Conference, 2009, p.2455-2458</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5385482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5385482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Makinen, R.</creatorcontrib><creatorcontrib>Sillanpaa, H.</creatorcontrib><creatorcontrib>Ostman, K.</creatorcontrib><creatorcontrib>Palukuru, V.</creatorcontrib><creatorcontrib>Pynttari, V.</creatorcontrib><creatorcontrib>Kanerva, T.</creatorcontrib><creatorcontrib>Hagberg, J.</creatorcontrib><creatorcontrib>Lepisto, T.</creatorcontrib><creatorcontrib>Jantunen, H.</creatorcontrib><creatorcontrib>Yang, M.</creatorcontrib><creatorcontrib>Laxton, P.B.</creatorcontrib><creatorcontrib>Arimura, H.</creatorcontrib><creatorcontrib>Ronkka, R.</creatorcontrib><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><title>2009 Asia Pacific Microwave Conference</title><addtitle>APMC</addtitle><description>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</description><subject>Conducting materials</subject><subject>Conductivity measurement</subject><subject>Conductors</subject><subject>Consumer electronics</subject><subject>Copper</subject><subject>Ink</subject><subject>Manufacturing processes</subject><subject>nano-particle ink</subject><subject>nanotechnology</subject><subject>printable electronics</subject><subject>Printing</subject><subject>Scanning electron microscopy</subject><subject>Wideband</subject><issn>2165-4727</issn><issn>2165-4743</issn><isbn>9781424428014</isbn><isbn>1424428017</isbn><isbn>1424428025</isbn><isbn>9781424428021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UM1KxDAYjD8L7q77AOKlL9A1-ZI0yXEp6w-sKKJ4XL6mCUZqW9J40Kc34OpchmFgmBlCLhhdM0bN1ebxvl4DpWYtuZZCwxFZMAFCgKYgj8kcWCVLoQQ_ISuj9J_HxOm_B2pGFjlDG1opCmdkNU3vNENILrmZk6fX0Lqywb4ttp2zKQaLXVG_YUSbXAzfmMLQF4Mvxhj6hE3nih77oRwxpmCzssM4upipbz9tGuJ0TmYeu8mtDrwkL9fb5_q23D3c3NWbXRmYkqlEhwbQQ4XUg2TaSkWF1poppahqOW88GtoIVoF3WvP8gW90XghgqBcVX5LL39zgnNvneh8Yv_aHr_gPV2tWPg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Makinen, R.</creator><creator>Sillanpaa, H.</creator><creator>Ostman, K.</creator><creator>Palukuru, V.</creator><creator>Pynttari, V.</creator><creator>Kanerva, T.</creator><creator>Hagberg, J.</creator><creator>Lepisto, T.</creator><creator>Jantunen, H.</creator><creator>Yang, M.</creator><creator>Laxton, P.B.</creator><creator>Arimura, H.</creator><creator>Ronkka, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><author>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aea92af26a0f2518c5704888177707d33bfa90b4162fe883385fb84422290f463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Conducting materials</topic><topic>Conductivity measurement</topic><topic>Conductors</topic><topic>Consumer electronics</topic><topic>Copper</topic><topic>Ink</topic><topic>Manufacturing processes</topic><topic>nano-particle ink</topic><topic>nanotechnology</topic><topic>printable electronics</topic><topic>Printing</topic><topic>Scanning electron microscopy</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Makinen, R.</creatorcontrib><creatorcontrib>Sillanpaa, H.</creatorcontrib><creatorcontrib>Ostman, K.</creatorcontrib><creatorcontrib>Palukuru, V.</creatorcontrib><creatorcontrib>Pynttari, V.</creatorcontrib><creatorcontrib>Kanerva, T.</creatorcontrib><creatorcontrib>Hagberg, J.</creatorcontrib><creatorcontrib>Lepisto, T.</creatorcontrib><creatorcontrib>Jantunen, H.</creatorcontrib><creatorcontrib>Yang, M.</creatorcontrib><creatorcontrib>Laxton, P.B.</creatorcontrib><creatorcontrib>Arimura, H.</creatorcontrib><creatorcontrib>Ronkka, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makinen, R.</au><au>Sillanpaa, H.</au><au>Ostman, K.</au><au>Palukuru, V.</au><au>Pynttari, V.</au><au>Kanerva, T.</au><au>Hagberg, J.</au><au>Lepisto, T.</au><au>Jantunen, H.</au><au>Yang, M.</au><au>Laxton, P.B.</au><au>Arimura, H.</au><au>Ronkka, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wide-band Electrical Characterization of printable nano-particle copper conductors</atitle><btitle>2009 Asia Pacific Microwave Conference</btitle><stitle>APMC</stitle><date>2009-12</date><risdate>2009</risdate><spage>2455</spage><epage>2458</epage><pages>2455-2458</pages><issn>2165-4727</issn><eissn>2165-4743</eissn><isbn>9781424428014</isbn><isbn>1424428017</isbn><eisbn>1424428025</eisbn><eisbn>9781424428021</eisbn><abstract>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</abstract><pub>IEEE</pub><doi>10.1109/APMC.2009.5385482</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-4727
ispartof 2009 Asia Pacific Microwave Conference, 2009, p.2455-2458
issn 2165-4727
2165-4743
language eng
recordid cdi_ieee_primary_5385482
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conducting materials
Conductivity measurement
Conductors
Consumer electronics
Copper
Ink
Manufacturing processes
nano-particle ink
nanotechnology
printable electronics
Printing
Scanning electron microscopy
Wideband
title Wide-band Electrical Characterization of printable nano-particle copper conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wide-band%20Electrical%20Characterization%20of%20printable%20nano-particle%20copper%20conductors&rft.btitle=2009%20Asia%20Pacific%20Microwave%20Conference&rft.au=Makinen,%20R.&rft.date=2009-12&rft.spage=2455&rft.epage=2458&rft.pages=2455-2458&rft.issn=2165-4727&rft.eissn=2165-4743&rft.isbn=9781424428014&rft.isbn_list=1424428017&rft_id=info:doi/10.1109/APMC.2009.5385482&rft_dat=%3Cieee_6IE%3E5385482%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424428025&rft.eisbn_list=9781424428021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5385482&rfr_iscdi=true