Wide-band Electrical Characterization of printable nano-particle copper conductors
Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2458 |
---|---|
container_issue | |
container_start_page | 2455 |
container_title | |
container_volume | |
creator | Makinen, R. Sillanpaa, H. Ostman, K. Palukuru, V. Pynttari, V. Kanerva, T. Hagberg, J. Lepisto, T. Jantunen, H. Yang, M. Laxton, P.B. Arimura, H. Ronkka, R. |
description | Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors. |
doi_str_mv | 10.1109/APMC.2009.5385482 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5385482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5385482</ieee_id><sourcerecordid>5385482</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aea92af26a0f2518c5704888177707d33bfa90b4162fe883385fb84422290f463</originalsourceid><addsrcrecordid>eNo9UM1KxDAYjD8L7q77AOKlL9A1-ZI0yXEp6w-sKKJ4XL6mCUZqW9J40Kc34OpchmFgmBlCLhhdM0bN1ebxvl4DpWYtuZZCwxFZMAFCgKYgj8kcWCVLoQQ_ISuj9J_HxOm_B2pGFjlDG1opCmdkNU3vNENILrmZk6fX0Lqywb4ttp2zKQaLXVG_YUSbXAzfmMLQF4Mvxhj6hE3nih77oRwxpmCzssM4upipbz9tGuJ0TmYeu8mtDrwkL9fb5_q23D3c3NWbXRmYkqlEhwbQQ4XUg2TaSkWF1poppahqOW88GtoIVoF3WvP8gW90XghgqBcVX5LL39zgnNvneh8Yv_aHr_gPV2tWPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</creator><creatorcontrib>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</creatorcontrib><description>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</description><identifier>ISSN: 2165-4727</identifier><identifier>ISBN: 9781424428014</identifier><identifier>ISBN: 1424428017</identifier><identifier>EISSN: 2165-4743</identifier><identifier>EISBN: 1424428025</identifier><identifier>EISBN: 9781424428021</identifier><identifier>DOI: 10.1109/APMC.2009.5385482</identifier><identifier>LCCN: 2008906702</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conducting materials ; Conductivity measurement ; Conductors ; Consumer electronics ; Copper ; Ink ; Manufacturing processes ; nano-particle ink ; nanotechnology ; printable electronics ; Printing ; Scanning electron microscopy ; Wideband</subject><ispartof>2009 Asia Pacific Microwave Conference, 2009, p.2455-2458</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5385482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5385482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Makinen, R.</creatorcontrib><creatorcontrib>Sillanpaa, H.</creatorcontrib><creatorcontrib>Ostman, K.</creatorcontrib><creatorcontrib>Palukuru, V.</creatorcontrib><creatorcontrib>Pynttari, V.</creatorcontrib><creatorcontrib>Kanerva, T.</creatorcontrib><creatorcontrib>Hagberg, J.</creatorcontrib><creatorcontrib>Lepisto, T.</creatorcontrib><creatorcontrib>Jantunen, H.</creatorcontrib><creatorcontrib>Yang, M.</creatorcontrib><creatorcontrib>Laxton, P.B.</creatorcontrib><creatorcontrib>Arimura, H.</creatorcontrib><creatorcontrib>Ronkka, R.</creatorcontrib><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><title>2009 Asia Pacific Microwave Conference</title><addtitle>APMC</addtitle><description>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</description><subject>Conducting materials</subject><subject>Conductivity measurement</subject><subject>Conductors</subject><subject>Consumer electronics</subject><subject>Copper</subject><subject>Ink</subject><subject>Manufacturing processes</subject><subject>nano-particle ink</subject><subject>nanotechnology</subject><subject>printable electronics</subject><subject>Printing</subject><subject>Scanning electron microscopy</subject><subject>Wideband</subject><issn>2165-4727</issn><issn>2165-4743</issn><isbn>9781424428014</isbn><isbn>1424428017</isbn><isbn>1424428025</isbn><isbn>9781424428021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UM1KxDAYjD8L7q77AOKlL9A1-ZI0yXEp6w-sKKJ4XL6mCUZqW9J40Kc34OpchmFgmBlCLhhdM0bN1ebxvl4DpWYtuZZCwxFZMAFCgKYgj8kcWCVLoQQ_ISuj9J_HxOm_B2pGFjlDG1opCmdkNU3vNENILrmZk6fX0Lqywb4ttp2zKQaLXVG_YUSbXAzfmMLQF4Mvxhj6hE3nih77oRwxpmCzssM4upipbz9tGuJ0TmYeu8mtDrwkL9fb5_q23D3c3NWbXRmYkqlEhwbQQ4XUg2TaSkWF1poppahqOW88GtoIVoF3WvP8gW90XghgqBcVX5LL39zgnNvneh8Yv_aHr_gPV2tWPg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Makinen, R.</creator><creator>Sillanpaa, H.</creator><creator>Ostman, K.</creator><creator>Palukuru, V.</creator><creator>Pynttari, V.</creator><creator>Kanerva, T.</creator><creator>Hagberg, J.</creator><creator>Lepisto, T.</creator><creator>Jantunen, H.</creator><creator>Yang, M.</creator><creator>Laxton, P.B.</creator><creator>Arimura, H.</creator><creator>Ronkka, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Wide-band Electrical Characterization of printable nano-particle copper conductors</title><author>Makinen, R. ; Sillanpaa, H. ; Ostman, K. ; Palukuru, V. ; Pynttari, V. ; Kanerva, T. ; Hagberg, J. ; Lepisto, T. ; Jantunen, H. ; Yang, M. ; Laxton, P.B. ; Arimura, H. ; Ronkka, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aea92af26a0f2518c5704888177707d33bfa90b4162fe883385fb84422290f463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Conducting materials</topic><topic>Conductivity measurement</topic><topic>Conductors</topic><topic>Consumer electronics</topic><topic>Copper</topic><topic>Ink</topic><topic>Manufacturing processes</topic><topic>nano-particle ink</topic><topic>nanotechnology</topic><topic>printable electronics</topic><topic>Printing</topic><topic>Scanning electron microscopy</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Makinen, R.</creatorcontrib><creatorcontrib>Sillanpaa, H.</creatorcontrib><creatorcontrib>Ostman, K.</creatorcontrib><creatorcontrib>Palukuru, V.</creatorcontrib><creatorcontrib>Pynttari, V.</creatorcontrib><creatorcontrib>Kanerva, T.</creatorcontrib><creatorcontrib>Hagberg, J.</creatorcontrib><creatorcontrib>Lepisto, T.</creatorcontrib><creatorcontrib>Jantunen, H.</creatorcontrib><creatorcontrib>Yang, M.</creatorcontrib><creatorcontrib>Laxton, P.B.</creatorcontrib><creatorcontrib>Arimura, H.</creatorcontrib><creatorcontrib>Ronkka, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makinen, R.</au><au>Sillanpaa, H.</au><au>Ostman, K.</au><au>Palukuru, V.</au><au>Pynttari, V.</au><au>Kanerva, T.</au><au>Hagberg, J.</au><au>Lepisto, T.</au><au>Jantunen, H.</au><au>Yang, M.</au><au>Laxton, P.B.</au><au>Arimura, H.</au><au>Ronkka, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wide-band Electrical Characterization of printable nano-particle copper conductors</atitle><btitle>2009 Asia Pacific Microwave Conference</btitle><stitle>APMC</stitle><date>2009-12</date><risdate>2009</risdate><spage>2455</spage><epage>2458</epage><pages>2455-2458</pages><issn>2165-4727</issn><eissn>2165-4743</eissn><isbn>9781424428014</isbn><isbn>1424428017</isbn><eisbn>1424428025</eisbn><eisbn>9781424428021</eisbn><abstract>Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·10 7 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·10 7 S/m is similar to that of typical nano-metal conductors.</abstract><pub>IEEE</pub><doi>10.1109/APMC.2009.5385482</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2165-4727 |
ispartof | 2009 Asia Pacific Microwave Conference, 2009, p.2455-2458 |
issn | 2165-4727 2165-4743 |
language | eng |
recordid | cdi_ieee_primary_5385482 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Conducting materials Conductivity measurement Conductors Consumer electronics Copper Ink Manufacturing processes nano-particle ink nanotechnology printable electronics Printing Scanning electron microscopy Wideband |
title | Wide-band Electrical Characterization of printable nano-particle copper conductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wide-band%20Electrical%20Characterization%20of%20printable%20nano-particle%20copper%20conductors&rft.btitle=2009%20Asia%20Pacific%20Microwave%20Conference&rft.au=Makinen,%20R.&rft.date=2009-12&rft.spage=2455&rft.epage=2458&rft.pages=2455-2458&rft.issn=2165-4727&rft.eissn=2165-4743&rft.isbn=9781424428014&rft.isbn_list=1424428017&rft_id=info:doi/10.1109/APMC.2009.5385482&rft_dat=%3Cieee_6IE%3E5385482%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424428025&rft.eisbn_list=9781424428021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5385482&rfr_iscdi=true |