An Effective Method to Identify Machine Automatically Generated Paper

How to identify a machine automatically generated paper is an active research direction. It is involved in machine learning and semantic understanding. However in this paper, we introduce a simple but effective method to quickly identify whether a paper is from a paper generator or not. We design an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiping Xiong, Tao Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 101
container_title
container_volume
creator Jiping Xiong
Tao Huang
description How to identify a machine automatically generated paper is an active research direction. It is involved in machine learning and semantic understanding. However in this paper, we introduce a simple but effective method to quickly identify whether a paper is from a paper generator or not. We design and implement the detection system using LAMP, and Yahoo Boss OpenAPI interface. Experimental result shows that our method is useful to detect faked paper and can be easily adapted to other related work.
doi_str_mv 10.1109/KESE.2009.62
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5383611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5383611</ieee_id><sourcerecordid>5383611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-48cc35eb19174a6c8451859c1ba07e8101f79966e891292474d05cdf8a5caa453</originalsourceid><addsrcrecordid>eNotj81Kw0AURgekoNbs3LmZF0icO5nfZSixFlsU1HWZTu7QkTQpySjk7Y3Us_kWBz44hNwDKwCYfXyp3-uCM2YLxa9IZrUBwYWQJRdyQW7_jC0VSH5NsnH8YjOSK2vYDamrjtYhoE_xB-kO07FvaOrppsEuxTDRnfPH2CGtvlN_cil617YTXWOHg0vY0Dd3xuGOLIJrR8z-d0k-n-qP1XO-fV1vVtU2j6BlyoXxvpR4AAtaOOWNkGCk9XBwTKMBBkFbqxQaC9xyoUXDpG-CcdI7N_csycPlNyLi_jzEkxumvSzNXAflL75bSeY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Effective Method to Identify Machine Automatically Generated Paper</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiping Xiong ; Tao Huang</creator><creatorcontrib>Jiping Xiong ; Tao Huang</creatorcontrib><description>How to identify a machine automatically generated paper is an active research direction. It is involved in machine learning and semantic understanding. However in this paper, we introduce a simple but effective method to quickly identify whether a paper is from a paper generator or not. We design and implement the detection system using LAMP, and Yahoo Boss OpenAPI interface. Experimental result shows that our method is useful to detect faked paper and can be easily adapted to other related work.</description><identifier>ISBN: 9781424453245</identifier><identifier>ISBN: 0769539165</identifier><identifier>ISBN: 1424453240</identifier><identifier>ISBN: 9780769539164</identifier><identifier>DOI: 10.1109/KESE.2009.62</identifier><identifier>LCCN: 2009936152</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anti-plagiarism ; Educational institutions ; Flowcharts ; Internet ; Knowledge engineering ; LAMP ; Lamps ; openAPI ; paper generator ; Portals ; search engine ; Search engines ; Software engineering ; Testing</subject><ispartof>2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering, 2009, p.101-102</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5383611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5383611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiping Xiong</creatorcontrib><creatorcontrib>Tao Huang</creatorcontrib><title>An Effective Method to Identify Machine Automatically Generated Paper</title><title>2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering</title><addtitle>KESE</addtitle><description>How to identify a machine automatically generated paper is an active research direction. It is involved in machine learning and semantic understanding. However in this paper, we introduce a simple but effective method to quickly identify whether a paper is from a paper generator or not. We design and implement the detection system using LAMP, and Yahoo Boss OpenAPI interface. Experimental result shows that our method is useful to detect faked paper and can be easily adapted to other related work.</description><subject>Anti-plagiarism</subject><subject>Educational institutions</subject><subject>Flowcharts</subject><subject>Internet</subject><subject>Knowledge engineering</subject><subject>LAMP</subject><subject>Lamps</subject><subject>openAPI</subject><subject>paper generator</subject><subject>Portals</subject><subject>search engine</subject><subject>Search engines</subject><subject>Software engineering</subject><subject>Testing</subject><isbn>9781424453245</isbn><isbn>0769539165</isbn><isbn>1424453240</isbn><isbn>9780769539164</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURgekoNbs3LmZF0icO5nfZSixFlsU1HWZTu7QkTQpySjk7Y3Us_kWBz44hNwDKwCYfXyp3-uCM2YLxa9IZrUBwYWQJRdyQW7_jC0VSH5NsnH8YjOSK2vYDamrjtYhoE_xB-kO07FvaOrppsEuxTDRnfPH2CGtvlN_cil617YTXWOHg0vY0Dd3xuGOLIJrR8z-d0k-n-qP1XO-fV1vVtU2j6BlyoXxvpR4AAtaOOWNkGCk9XBwTKMBBkFbqxQaC9xyoUXDpG-CcdI7N_csycPlNyLi_jzEkxumvSzNXAflL75bSeY</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Jiping Xiong</creator><creator>Tao Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>An Effective Method to Identify Machine Automatically Generated Paper</title><author>Jiping Xiong ; Tao Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-48cc35eb19174a6c8451859c1ba07e8101f79966e891292474d05cdf8a5caa453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anti-plagiarism</topic><topic>Educational institutions</topic><topic>Flowcharts</topic><topic>Internet</topic><topic>Knowledge engineering</topic><topic>LAMP</topic><topic>Lamps</topic><topic>openAPI</topic><topic>paper generator</topic><topic>Portals</topic><topic>search engine</topic><topic>Search engines</topic><topic>Software engineering</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiping Xiong</creatorcontrib><creatorcontrib>Tao Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiping Xiong</au><au>Tao Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Effective Method to Identify Machine Automatically Generated Paper</atitle><btitle>2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering</btitle><stitle>KESE</stitle><date>2009-12</date><risdate>2009</risdate><spage>101</spage><epage>102</epage><pages>101-102</pages><isbn>9781424453245</isbn><isbn>0769539165</isbn><isbn>1424453240</isbn><isbn>9780769539164</isbn><abstract>How to identify a machine automatically generated paper is an active research direction. It is involved in machine learning and semantic understanding. However in this paper, we introduce a simple but effective method to quickly identify whether a paper is from a paper generator or not. We design and implement the detection system using LAMP, and Yahoo Boss OpenAPI interface. Experimental result shows that our method is useful to detect faked paper and can be easily adapted to other related work.</abstract><pub>IEEE</pub><doi>10.1109/KESE.2009.62</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424453245
ispartof 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering, 2009, p.101-102
issn
language eng
recordid cdi_ieee_primary_5383611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anti-plagiarism
Educational institutions
Flowcharts
Internet
Knowledge engineering
LAMP
Lamps
openAPI
paper generator
Portals
search engine
Search engines
Software engineering
Testing
title An Effective Method to Identify Machine Automatically Generated Paper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Effective%20Method%20to%20Identify%20Machine%20Automatically%20Generated%20Paper&rft.btitle=2009%20Pacific-Asia%20Conference%20on%20Knowledge%20Engineering%20and%20Software%20Engineering&rft.au=Jiping%20Xiong&rft.date=2009-12&rft.spage=101&rft.epage=102&rft.pages=101-102&rft.isbn=9781424453245&rft.isbn_list=0769539165&rft.isbn_list=1424453240&rft.isbn_list=9780769539164&rft_id=info:doi/10.1109/KESE.2009.62&rft_dat=%3Cieee_6IE%3E5383611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5383611&rfr_iscdi=true