A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision

Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to impleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fazli, S., Dehnavi, H.M., Moallem, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 97
container_title
container_volume
creator Fazli, S.
Dehnavi, H.M.
Moallem, P.
description Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.
doi_str_mv 10.1109/ICMV.2009.48
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5381092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5381092</ieee_id><sourcerecordid>5381092</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c5d7c978706591fb65f74aef8bd3e647e2d9bbd2e92935d236b0e437f2e24cb3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AYRUdEUGt27tzMCyTO_2SWJda20FLQNtuSyXxpR9JEMlOxb29AXV3u4lwOF6FHSjJKiXleFusyY4SYTORXKDE6p4IJIZWQ9Brd_xchblESwgchhBqlpaJ3qJzit96eQ8QbG2JVt4BfIEIdfd_hNcRj77Dv8MIfju0Fb-E7ngdweNZ9-aHvTtDFgHfBdwf8HmGAHpc-jOgDummqNkDylxO0e51ti0W62syXxXSVeqplTHUtna5HX02UNLSxSjZaVNDk1nFQQgNzxlrHwDDDpWNcWQKC64YBE7XlE_T0u-sBYP85-FM1XPaS5-MtjP8ASgRRhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</creator><creatorcontrib>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</creatorcontrib><description>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</description><identifier>ISBN: 1424456444</identifier><identifier>ISBN: 0769539440</identifier><identifier>ISBN: 9780769539447</identifier><identifier>ISBN: 9781424456444</identifier><identifier>EISBN: 9781424456451</identifier><identifier>EISBN: 1424456452</identifier><identifier>DOI: 10.1109/ICMV.2009.48</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Calibration ; Cameras ; Computer vision ; highly textured environments ; Image reconstruction ; Layout ; Navigation ; obstacle detection ; positive obstacle ; Robustness ; staircase ; Stereo image processing ; Stereo vision</subject><ispartof>2009 Second International Conference on Machine Vision, 2009, p.97-100</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5381092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5381092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fazli, S.</creatorcontrib><creatorcontrib>Dehnavi, H.M.</creatorcontrib><creatorcontrib>Moallem, P.</creatorcontrib><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><title>2009 Second International Conference on Machine Vision</title><addtitle>ICMV</addtitle><description>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</description><subject>Application software</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>highly textured environments</subject><subject>Image reconstruction</subject><subject>Layout</subject><subject>Navigation</subject><subject>obstacle detection</subject><subject>positive obstacle</subject><subject>Robustness</subject><subject>staircase</subject><subject>Stereo image processing</subject><subject>Stereo vision</subject><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><isbn>9781424456451</isbn><isbn>1424456452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AYRUdEUGt27tzMCyTO_2SWJda20FLQNtuSyXxpR9JEMlOxb29AXV3u4lwOF6FHSjJKiXleFusyY4SYTORXKDE6p4IJIZWQ9Brd_xchblESwgchhBqlpaJ3qJzit96eQ8QbG2JVt4BfIEIdfd_hNcRj77Dv8MIfju0Fb-E7ngdweNZ9-aHvTtDFgHfBdwf8HmGAHpc-jOgDummqNkDylxO0e51ti0W62syXxXSVeqplTHUtna5HX02UNLSxSjZaVNDk1nFQQgNzxlrHwDDDpWNcWQKC64YBE7XlE_T0u-sBYP85-FM1XPaS5-MtjP8ASgRRhQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Fazli, S.</creator><creator>Dehnavi, H.M.</creator><creator>Moallem, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><author>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c5d7c978706591fb65f74aef8bd3e647e2d9bbd2e92935d236b0e437f2e24cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>highly textured environments</topic><topic>Image reconstruction</topic><topic>Layout</topic><topic>Navigation</topic><topic>obstacle detection</topic><topic>positive obstacle</topic><topic>Robustness</topic><topic>staircase</topic><topic>Stereo image processing</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Fazli, S.</creatorcontrib><creatorcontrib>Dehnavi, H.M.</creatorcontrib><creatorcontrib>Moallem, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fazli, S.</au><au>Dehnavi, H.M.</au><au>Moallem, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</atitle><btitle>2009 Second International Conference on Machine Vision</btitle><stitle>ICMV</stitle><date>2009-12</date><risdate>2009</risdate><spage>97</spage><epage>100</epage><pages>97-100</pages><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><eisbn>9781424456451</eisbn><eisbn>1424456452</eisbn><abstract>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICMV.2009.48</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424456444
ispartof 2009 Second International Conference on Machine Vision, 2009, p.97-100
issn
language eng
recordid cdi_ieee_primary_5381092
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Calibration
Cameras
Computer vision
highly textured environments
Image reconstruction
Layout
Navigation
obstacle detection
positive obstacle
Robustness
staircase
Stereo image processing
Stereo vision
title A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Robust%20Obstacle%20Detection%20Method%20in%20Highly%20Textured%20Environments%20Using%20Stereo%20Vision&rft.btitle=2009%20Second%20International%20Conference%20on%20Machine%20Vision&rft.au=Fazli,%20S.&rft.date=2009-12&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.isbn=1424456444&rft.isbn_list=0769539440&rft.isbn_list=9780769539447&rft.isbn_list=9781424456444&rft_id=info:doi/10.1109/ICMV.2009.48&rft_dat=%3Cieee_6IE%3E5381092%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456451&rft.eisbn_list=1424456452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5381092&rfr_iscdi=true