A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision
Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to impleme...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | |
container_volume | |
creator | Fazli, S. Dehnavi, H.M. Moallem, P. |
description | Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ICMV.2009.48 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5381092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5381092</ieee_id><sourcerecordid>5381092</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c5d7c978706591fb65f74aef8bd3e647e2d9bbd2e92935d236b0e437f2e24cb3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AYRUdEUGt27tzMCyTO_2SWJda20FLQNtuSyXxpR9JEMlOxb29AXV3u4lwOF6FHSjJKiXleFusyY4SYTORXKDE6p4IJIZWQ9Brd_xchblESwgchhBqlpaJ3qJzit96eQ8QbG2JVt4BfIEIdfd_hNcRj77Dv8MIfju0Fb-E7ngdweNZ9-aHvTtDFgHfBdwf8HmGAHpc-jOgDummqNkDylxO0e51ti0W62syXxXSVeqplTHUtna5HX02UNLSxSjZaVNDk1nFQQgNzxlrHwDDDpWNcWQKC64YBE7XlE_T0u-sBYP85-FM1XPaS5-MtjP8ASgRRhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</creator><creatorcontrib>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</creatorcontrib><description>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</description><identifier>ISBN: 1424456444</identifier><identifier>ISBN: 0769539440</identifier><identifier>ISBN: 9780769539447</identifier><identifier>ISBN: 9781424456444</identifier><identifier>EISBN: 9781424456451</identifier><identifier>EISBN: 1424456452</identifier><identifier>DOI: 10.1109/ICMV.2009.48</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Calibration ; Cameras ; Computer vision ; highly textured environments ; Image reconstruction ; Layout ; Navigation ; obstacle detection ; positive obstacle ; Robustness ; staircase ; Stereo image processing ; Stereo vision</subject><ispartof>2009 Second International Conference on Machine Vision, 2009, p.97-100</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5381092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5381092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fazli, S.</creatorcontrib><creatorcontrib>Dehnavi, H.M.</creatorcontrib><creatorcontrib>Moallem, P.</creatorcontrib><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><title>2009 Second International Conference on Machine Vision</title><addtitle>ICMV</addtitle><description>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</description><subject>Application software</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>highly textured environments</subject><subject>Image reconstruction</subject><subject>Layout</subject><subject>Navigation</subject><subject>obstacle detection</subject><subject>positive obstacle</subject><subject>Robustness</subject><subject>staircase</subject><subject>Stereo image processing</subject><subject>Stereo vision</subject><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><isbn>9781424456451</isbn><isbn>1424456452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AYRUdEUGt27tzMCyTO_2SWJda20FLQNtuSyXxpR9JEMlOxb29AXV3u4lwOF6FHSjJKiXleFusyY4SYTORXKDE6p4IJIZWQ9Brd_xchblESwgchhBqlpaJ3qJzit96eQ8QbG2JVt4BfIEIdfd_hNcRj77Dv8MIfju0Fb-E7ngdweNZ9-aHvTtDFgHfBdwf8HmGAHpc-jOgDummqNkDylxO0e51ti0W62syXxXSVeqplTHUtna5HX02UNLSxSjZaVNDk1nFQQgNzxlrHwDDDpWNcWQKC64YBE7XlE_T0u-sBYP85-FM1XPaS5-MtjP8ASgRRhQ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Fazli, S.</creator><creator>Dehnavi, H.M.</creator><creator>Moallem, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</title><author>Fazli, S. ; Dehnavi, H.M. ; Moallem, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c5d7c978706591fb65f74aef8bd3e647e2d9bbd2e92935d236b0e437f2e24cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>highly textured environments</topic><topic>Image reconstruction</topic><topic>Layout</topic><topic>Navigation</topic><topic>obstacle detection</topic><topic>positive obstacle</topic><topic>Robustness</topic><topic>staircase</topic><topic>Stereo image processing</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Fazli, S.</creatorcontrib><creatorcontrib>Dehnavi, H.M.</creatorcontrib><creatorcontrib>Moallem, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fazli, S.</au><au>Dehnavi, H.M.</au><au>Moallem, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision</atitle><btitle>2009 Second International Conference on Machine Vision</btitle><stitle>ICMV</stitle><date>2009-12</date><risdate>2009</risdate><spage>97</spage><epage>100</epage><pages>97-100</pages><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><eisbn>9781424456451</eisbn><eisbn>1424456452</eisbn><abstract>Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. This paper presents a robust method to detect positive obstacles including staircases in highly textured environments. The proposed method is easy to implement and fast enough for obstacle avoidance. This work is partly inspired by the work of Nicholas Molton et al. The algorithm consists of several steps including calibration, pre processing, obstacle detection, analysis of disparity map and depth computation. This method works well in highly textured environments and ideal for real applications. An adaptive thresholding is also applied for better noise and texture removal. Experimental results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICMV.2009.48</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424456444 |
ispartof | 2009 Second International Conference on Machine Vision, 2009, p.97-100 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5381092 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Calibration Cameras Computer vision highly textured environments Image reconstruction Layout Navigation obstacle detection positive obstacle Robustness staircase Stereo image processing Stereo vision |
title | A Robust Obstacle Detection Method in Highly Textured Environments Using Stereo Vision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Robust%20Obstacle%20Detection%20Method%20in%20Highly%20Textured%20Environments%20Using%20Stereo%20Vision&rft.btitle=2009%20Second%20International%20Conference%20on%20Machine%20Vision&rft.au=Fazli,%20S.&rft.date=2009-12&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.isbn=1424456444&rft.isbn_list=0769539440&rft.isbn_list=9780769539447&rft.isbn_list=9781424456444&rft_id=info:doi/10.1109/ICMV.2009.48&rft_dat=%3Cieee_6IE%3E5381092%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456451&rft.eisbn_list=1424456452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5381092&rfr_iscdi=true |