Fingerprint Verification Using the Texture of Fingerprint Image

In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khalil, M.S., Muhammad, D., AL-Nuzaili, Q.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue
container_start_page 27
container_title
container_volume
creator Khalil, M.S.
Muhammad, D.
AL-Nuzaili, Q.
description In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.
doi_str_mv 10.1109/ICMV.2009.18
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5381079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5381079</ieee_id><sourcerecordid>5381079</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-148181c71a64e535a4a4f1d3109e1d155012cf9794b86deccfb9e25ce20728613</originalsourceid><addsrcrecordid>eNpNjk1Lw0AURUdEUGt27tzMH0icN3nztRIJtgYqbtpuy3Typo7YVCYR9N8bUMHV5XIPl8PYNYgKQLjbtnnaVFIIV4E9YYUzFlAiKo0KTtnlX0E8Z8UwvAohwGmjNFywu3nq95Tfc-pHvqGcYgp-TMeer4dp4eML8RV9jh-Z-DHy_3R78Hu6YmfRvw1U_OaMrecPq-axXD4v2uZ-WSYwaiwBLVgIBrxGUrXy6DFCV0_2BB0oJUCG6IzDndUdhRB3jqQKJIWRVkM9Yzc_v4mItpPAweevraotCOPqbz8YSHc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</creator><creatorcontrib>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</creatorcontrib><description>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</description><identifier>ISBN: 1424456444</identifier><identifier>ISBN: 0769539440</identifier><identifier>ISBN: 9780769539447</identifier><identifier>ISBN: 9781424456444</identifier><identifier>EISBN: 9781424456451</identifier><identifier>EISBN: 1424456452</identifier><identifier>DOI: 10.1109/ICMV.2009.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Co-occurrence matrix ; Computer graphics ; Electronic mail ; Enhancement ; Error analysis ; Feature extraction ; Fingerprint ; Fingerprint recognition ; Frequency estimation ; Image matching ; Machine vision ; Noise reduction ; Nonlinear distortion</subject><ispartof>2009 Second International Conference on Machine Vision, 2009, p.27-31</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5381079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5381079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalil, M.S.</creatorcontrib><creatorcontrib>Muhammad, D.</creatorcontrib><creatorcontrib>AL-Nuzaili, Q.</creatorcontrib><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><title>2009 Second International Conference on Machine Vision</title><addtitle>ICMV</addtitle><description>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</description><subject>Co-occurrence matrix</subject><subject>Computer graphics</subject><subject>Electronic mail</subject><subject>Enhancement</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Fingerprint</subject><subject>Fingerprint recognition</subject><subject>Frequency estimation</subject><subject>Image matching</subject><subject>Machine vision</subject><subject>Noise reduction</subject><subject>Nonlinear distortion</subject><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><isbn>9781424456451</isbn><isbn>1424456452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjk1Lw0AURUdEUGt27tzMH0icN3nztRIJtgYqbtpuy3Typo7YVCYR9N8bUMHV5XIPl8PYNYgKQLjbtnnaVFIIV4E9YYUzFlAiKo0KTtnlX0E8Z8UwvAohwGmjNFywu3nq95Tfc-pHvqGcYgp-TMeer4dp4eML8RV9jh-Z-DHy_3R78Hu6YmfRvw1U_OaMrecPq-axXD4v2uZ-WSYwaiwBLVgIBrxGUrXy6DFCV0_2BB0oJUCG6IzDndUdhRB3jqQKJIWRVkM9Yzc_v4mItpPAweevraotCOPqbz8YSHc</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Khalil, M.S.</creator><creator>Muhammad, D.</creator><creator>AL-Nuzaili, Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><author>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-148181c71a64e535a4a4f1d3109e1d155012cf9794b86deccfb9e25ce20728613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Co-occurrence matrix</topic><topic>Computer graphics</topic><topic>Electronic mail</topic><topic>Enhancement</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Fingerprint</topic><topic>Fingerprint recognition</topic><topic>Frequency estimation</topic><topic>Image matching</topic><topic>Machine vision</topic><topic>Noise reduction</topic><topic>Nonlinear distortion</topic><toplevel>online_resources</toplevel><creatorcontrib>Khalil, M.S.</creatorcontrib><creatorcontrib>Muhammad, D.</creatorcontrib><creatorcontrib>AL-Nuzaili, Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalil, M.S.</au><au>Muhammad, D.</au><au>AL-Nuzaili, Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fingerprint Verification Using the Texture of Fingerprint Image</atitle><btitle>2009 Second International Conference on Machine Vision</btitle><stitle>ICMV</stitle><date>2009-12</date><risdate>2009</risdate><spage>27</spage><epage>31</epage><pages>27-31</pages><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><eisbn>9781424456451</eisbn><eisbn>1424456452</eisbn><abstract>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</abstract><pub>IEEE</pub><doi>10.1109/ICMV.2009.18</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424456444
ispartof 2009 Second International Conference on Machine Vision, 2009, p.27-31
issn
language eng
recordid cdi_ieee_primary_5381079
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Co-occurrence matrix
Computer graphics
Electronic mail
Enhancement
Error analysis
Feature extraction
Fingerprint
Fingerprint recognition
Frequency estimation
Image matching
Machine vision
Noise reduction
Nonlinear distortion
title Fingerprint Verification Using the Texture of Fingerprint Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fingerprint%20Verification%20Using%20the%20Texture%20of%20Fingerprint%20Image&rft.btitle=2009%20Second%20International%20Conference%20on%20Machine%20Vision&rft.au=Khalil,%20M.S.&rft.date=2009-12&rft.spage=27&rft.epage=31&rft.pages=27-31&rft.isbn=1424456444&rft.isbn_list=0769539440&rft.isbn_list=9780769539447&rft.isbn_list=9781424456444&rft_id=info:doi/10.1109/ICMV.2009.18&rft_dat=%3Cieee_6IE%3E5381079%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456451&rft.eisbn_list=1424456452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5381079&rfr_iscdi=true