Fingerprint Verification Using the Texture of Fingerprint Image
In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint im...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | |
container_start_page | 27 |
container_title | |
container_volume | |
creator | Khalil, M.S. Muhammad, D. AL-Nuzaili, Q. |
description | In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%. |
doi_str_mv | 10.1109/ICMV.2009.18 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5381079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5381079</ieee_id><sourcerecordid>5381079</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-148181c71a64e535a4a4f1d3109e1d155012cf9794b86deccfb9e25ce20728613</originalsourceid><addsrcrecordid>eNpNjk1Lw0AURUdEUGt27tzMH0icN3nztRIJtgYqbtpuy3Typo7YVCYR9N8bUMHV5XIPl8PYNYgKQLjbtnnaVFIIV4E9YYUzFlAiKo0KTtnlX0E8Z8UwvAohwGmjNFywu3nq95Tfc-pHvqGcYgp-TMeer4dp4eML8RV9jh-Z-DHy_3R78Hu6YmfRvw1U_OaMrecPq-axXD4v2uZ-WSYwaiwBLVgIBrxGUrXy6DFCV0_2BB0oJUCG6IzDndUdhRB3jqQKJIWRVkM9Yzc_v4mItpPAweevraotCOPqbz8YSHc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</creator><creatorcontrib>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</creatorcontrib><description>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</description><identifier>ISBN: 1424456444</identifier><identifier>ISBN: 0769539440</identifier><identifier>ISBN: 9780769539447</identifier><identifier>ISBN: 9781424456444</identifier><identifier>EISBN: 9781424456451</identifier><identifier>EISBN: 1424456452</identifier><identifier>DOI: 10.1109/ICMV.2009.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Co-occurrence matrix ; Computer graphics ; Electronic mail ; Enhancement ; Error analysis ; Feature extraction ; Fingerprint ; Fingerprint recognition ; Frequency estimation ; Image matching ; Machine vision ; Noise reduction ; Nonlinear distortion</subject><ispartof>2009 Second International Conference on Machine Vision, 2009, p.27-31</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5381079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5381079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalil, M.S.</creatorcontrib><creatorcontrib>Muhammad, D.</creatorcontrib><creatorcontrib>AL-Nuzaili, Q.</creatorcontrib><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><title>2009 Second International Conference on Machine Vision</title><addtitle>ICMV</addtitle><description>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</description><subject>Co-occurrence matrix</subject><subject>Computer graphics</subject><subject>Electronic mail</subject><subject>Enhancement</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Fingerprint</subject><subject>Fingerprint recognition</subject><subject>Frequency estimation</subject><subject>Image matching</subject><subject>Machine vision</subject><subject>Noise reduction</subject><subject>Nonlinear distortion</subject><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><isbn>9781424456451</isbn><isbn>1424456452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjk1Lw0AURUdEUGt27tzMH0icN3nztRIJtgYqbtpuy3Typo7YVCYR9N8bUMHV5XIPl8PYNYgKQLjbtnnaVFIIV4E9YYUzFlAiKo0KTtnlX0E8Z8UwvAohwGmjNFywu3nq95Tfc-pHvqGcYgp-TMeer4dp4eML8RV9jh-Z-DHy_3R78Hu6YmfRvw1U_OaMrecPq-axXD4v2uZ-WSYwaiwBLVgIBrxGUrXy6DFCV0_2BB0oJUCG6IzDndUdhRB3jqQKJIWRVkM9Yzc_v4mItpPAweevraotCOPqbz8YSHc</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Khalil, M.S.</creator><creator>Muhammad, D.</creator><creator>AL-Nuzaili, Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Fingerprint Verification Using the Texture of Fingerprint Image</title><author>Khalil, M.S. ; Muhammad, D. ; AL-Nuzaili, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-148181c71a64e535a4a4f1d3109e1d155012cf9794b86deccfb9e25ce20728613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Co-occurrence matrix</topic><topic>Computer graphics</topic><topic>Electronic mail</topic><topic>Enhancement</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Fingerprint</topic><topic>Fingerprint recognition</topic><topic>Frequency estimation</topic><topic>Image matching</topic><topic>Machine vision</topic><topic>Noise reduction</topic><topic>Nonlinear distortion</topic><toplevel>online_resources</toplevel><creatorcontrib>Khalil, M.S.</creatorcontrib><creatorcontrib>Muhammad, D.</creatorcontrib><creatorcontrib>AL-Nuzaili, Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalil, M.S.</au><au>Muhammad, D.</au><au>AL-Nuzaili, Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fingerprint Verification Using the Texture of Fingerprint Image</atitle><btitle>2009 Second International Conference on Machine Vision</btitle><stitle>ICMV</stitle><date>2009-12</date><risdate>2009</risdate><spage>27</spage><epage>31</epage><pages>27-31</pages><isbn>1424456444</isbn><isbn>0769539440</isbn><isbn>9780769539447</isbn><isbn>9781424456444</isbn><eisbn>9781424456451</eisbn><eisbn>1424456452</eisbn><abstract>In this paper, a fingerprint verification method is presented that improves matching accuracy by overcoming the shortcomings of previous methods due to missing some minutiae, non-linear distortions, and rotation and distortion variations. It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point and then extract a 129 × 129 block, making the reference point its center. From the 4 co-occurrence matrices four statistical descriptors are computed. Experimental results show that the proposed method is more accurate than other methods the average false acceptance rate (FAR) is 0.62%, the average false rejection rate (FRR) is 0.08%, and the equal error rate (EER) is 0.35%.</abstract><pub>IEEE</pub><doi>10.1109/ICMV.2009.18</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424456444 |
ispartof | 2009 Second International Conference on Machine Vision, 2009, p.27-31 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5381079 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Co-occurrence matrix Computer graphics Electronic mail Enhancement Error analysis Feature extraction Fingerprint Fingerprint recognition Frequency estimation Image matching Machine vision Noise reduction Nonlinear distortion |
title | Fingerprint Verification Using the Texture of Fingerprint Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fingerprint%20Verification%20Using%20the%20Texture%20of%20Fingerprint%20Image&rft.btitle=2009%20Second%20International%20Conference%20on%20Machine%20Vision&rft.au=Khalil,%20M.S.&rft.date=2009-12&rft.spage=27&rft.epage=31&rft.pages=27-31&rft.isbn=1424456444&rft.isbn_list=0769539440&rft.isbn_list=9780769539447&rft.isbn_list=9781424456444&rft_id=info:doi/10.1109/ICMV.2009.18&rft_dat=%3Cieee_6IE%3E5381079%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424456451&rft.eisbn_list=1424456452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5381079&rfr_iscdi=true |