Codebook Optimization in Vector Quantization Using Genetic Algorithm

This paper presents genetic algorithm (GA) as a part of evolutionary computing for vector quantizer design in color image compression. Vector quantization, a lossy method to compress the image data in spatial domain. So the quality of the decompressed image is degraded. In order to achieve trade off...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chavan, P.U., Chavan, P.P., Dandawate, Y.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue
container_start_page 280
container_title
container_volume 1
creator Chavan, P.U.
Chavan, P.P.
Dandawate, Y.H.
description This paper presents genetic algorithm (GA) as a part of evolutionary computing for vector quantizer design in color image compression. Vector quantization, a lossy method to compress the image data in spatial domain. So the quality of the decompressed image is degraded. In order to achieve trade off between quality of compression along with good compression ratio, the vector quantizer must be designed optimally. Hence we have applied genetic algorithm on the optimal design of the codebook generation in VQ, where codebook could minimize the average distortion between a given training set and the codebook. The performance of decompression is observed by using image quality measure as PSNR for the images with RGB color space. Comparison of genetic algorithm (GA) based codebook method and random codebook method is done.
doi_str_mv 10.1109/ICCEE.2009.193
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5380481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5380481</ieee_id><sourcerecordid>5380481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-be0fc8af802dbc695183afb5200101aa88f628f764188821e205ab7e4d51a6543</originalsourceid><addsrcrecordid>eNo1jk1Lw0AURUekoK3ZunEzfyBx3nzlzbLEWAuFIli3ZZLM1NEmKcm40F_fiHo3Fy6HyyHkFlgGwMz9uijKMuOMmQyMuCBzlmujhOFKXpLE5AiSS6mEVjgj8x_OSKaNuSLJOL6zKVJxIfk1eSj6xlV9_0G3pxja8G1j6DsaOvrq6tgP9PnTdvF_3o2hO9CV61wMNV0eD_0Q4lt7Q2beHkeX_PWC7B7Ll-Ip3WxX62K5SQPkKqaVY75G65HxpqonYUBhfaUmP2BgLaLXHH2uJSAiB8eZslXuZKPAaiXFgtz9_gbn3P40hNYOX3slkEkEcQb-UU0s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Codebook Optimization in Vector Quantization Using Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chavan, P.U. ; Chavan, P.P. ; Dandawate, Y.H.</creator><creatorcontrib>Chavan, P.U. ; Chavan, P.P. ; Dandawate, Y.H.</creatorcontrib><description>This paper presents genetic algorithm (GA) as a part of evolutionary computing for vector quantizer design in color image compression. Vector quantization, a lossy method to compress the image data in spatial domain. So the quality of the decompressed image is degraded. In order to achieve trade off between quality of compression along with good compression ratio, the vector quantizer must be designed optimally. Hence we have applied genetic algorithm on the optimal design of the codebook generation in VQ, where codebook could minimize the average distortion between a given training set and the codebook. The performance of decompression is observed by using image quality measure as PSNR for the images with RGB color space. Comparison of genetic algorithm (GA) based codebook method and random codebook method is done.</description><identifier>ISBN: 9781424453658</identifier><identifier>ISBN: 1424453658</identifier><identifier>EISBN: 0769539254</identifier><identifier>EISBN: 9780769539256</identifier><identifier>DOI: 10.1109/ICCEE.2009.193</identifier><identifier>LCCN: 2009940699</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Color ; Degradation ; Distortion measurement ; Extraterrestrial measurements ; Genetic Algorithm ; Genetic algorithms ; Image coding ; Image compression ; Image quality ; PSNR ; Vector quantization</subject><ispartof>2009 Second International Conference on Computer and Electrical Engineering, 2009, Vol.1, p.280-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5380481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5380481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chavan, P.U.</creatorcontrib><creatorcontrib>Chavan, P.P.</creatorcontrib><creatorcontrib>Dandawate, Y.H.</creatorcontrib><title>Codebook Optimization in Vector Quantization Using Genetic Algorithm</title><title>2009 Second International Conference on Computer and Electrical Engineering</title><addtitle>ICCEE</addtitle><description>This paper presents genetic algorithm (GA) as a part of evolutionary computing for vector quantizer design in color image compression. Vector quantization, a lossy method to compress the image data in spatial domain. So the quality of the decompressed image is degraded. In order to achieve trade off between quality of compression along with good compression ratio, the vector quantizer must be designed optimally. Hence we have applied genetic algorithm on the optimal design of the codebook generation in VQ, where codebook could minimize the average distortion between a given training set and the codebook. The performance of decompression is observed by using image quality measure as PSNR for the images with RGB color space. Comparison of genetic algorithm (GA) based codebook method and random codebook method is done.</description><subject>Algorithm design and analysis</subject><subject>Color</subject><subject>Degradation</subject><subject>Distortion measurement</subject><subject>Extraterrestrial measurements</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image quality</subject><subject>PSNR</subject><subject>Vector quantization</subject><isbn>9781424453658</isbn><isbn>1424453658</isbn><isbn>0769539254</isbn><isbn>9780769539256</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jk1Lw0AURUekoK3ZunEzfyBx3nzlzbLEWAuFIli3ZZLM1NEmKcm40F_fiHo3Fy6HyyHkFlgGwMz9uijKMuOMmQyMuCBzlmujhOFKXpLE5AiSS6mEVjgj8x_OSKaNuSLJOL6zKVJxIfk1eSj6xlV9_0G3pxja8G1j6DsaOvrq6tgP9PnTdvF_3o2hO9CV61wMNV0eD_0Q4lt7Q2beHkeX_PWC7B7Ll-Ip3WxX62K5SQPkKqaVY75G65HxpqonYUBhfaUmP2BgLaLXHH2uJSAiB8eZslXuZKPAaiXFgtz9_gbn3P40hNYOX3slkEkEcQb-UU0s</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Chavan, P.U.</creator><creator>Chavan, P.P.</creator><creator>Dandawate, Y.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Codebook Optimization in Vector Quantization Using Genetic Algorithm</title><author>Chavan, P.U. ; Chavan, P.P. ; Dandawate, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-be0fc8af802dbc695183afb5200101aa88f628f764188821e205ab7e4d51a6543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Color</topic><topic>Degradation</topic><topic>Distortion measurement</topic><topic>Extraterrestrial measurements</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image quality</topic><topic>PSNR</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavan, P.U.</creatorcontrib><creatorcontrib>Chavan, P.P.</creatorcontrib><creatorcontrib>Dandawate, Y.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chavan, P.U.</au><au>Chavan, P.P.</au><au>Dandawate, Y.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Codebook Optimization in Vector Quantization Using Genetic Algorithm</atitle><btitle>2009 Second International Conference on Computer and Electrical Engineering</btitle><stitle>ICCEE</stitle><date>2009-12</date><risdate>2009</risdate><volume>1</volume><spage>280</spage><epage>283</epage><pages>280-283</pages><isbn>9781424453658</isbn><isbn>1424453658</isbn><eisbn>0769539254</eisbn><eisbn>9780769539256</eisbn><abstract>This paper presents genetic algorithm (GA) as a part of evolutionary computing for vector quantizer design in color image compression. Vector quantization, a lossy method to compress the image data in spatial domain. So the quality of the decompressed image is degraded. In order to achieve trade off between quality of compression along with good compression ratio, the vector quantizer must be designed optimally. Hence we have applied genetic algorithm on the optimal design of the codebook generation in VQ, where codebook could minimize the average distortion between a given training set and the codebook. The performance of decompression is observed by using image quality measure as PSNR for the images with RGB color space. Comparison of genetic algorithm (GA) based codebook method and random codebook method is done.</abstract><pub>IEEE</pub><doi>10.1109/ICCEE.2009.193</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424453658
ispartof 2009 Second International Conference on Computer and Electrical Engineering, 2009, Vol.1, p.280-283
issn
language eng
recordid cdi_ieee_primary_5380481
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Color
Degradation
Distortion measurement
Extraterrestrial measurements
Genetic Algorithm
Genetic algorithms
Image coding
Image compression
Image quality
PSNR
Vector quantization
title Codebook Optimization in Vector Quantization Using Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Codebook%20Optimization%20in%20Vector%20Quantization%20Using%20Genetic%20Algorithm&rft.btitle=2009%20Second%20International%20Conference%20on%20Computer%20and%20Electrical%20Engineering&rft.au=Chavan,%20P.U.&rft.date=2009-12&rft.volume=1&rft.spage=280&rft.epage=283&rft.pages=280-283&rft.isbn=9781424453658&rft.isbn_list=1424453658&rft_id=info:doi/10.1109/ICCEE.2009.193&rft_dat=%3Cieee_6IE%3E5380481%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769539254&rft.eisbn_list=9780769539256&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5380481&rfr_iscdi=true