Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System
In order to improve the resource utilization of virtual machine and control the resource allocation online effectively, in this paper, we present a grey prediction control model used for dynamic resource allocation in virtual machine as workloads changing. First, we forecast the allocation of virtua...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | |
container_volume | |
creator | Xianghua Xu Yanna Yan Jian Wan |
description | In order to improve the resource utilization of virtual machine and control the resource allocation online effectively, in this paper, we present a grey prediction control model used for dynamic resource allocation in virtual machine as workloads changing. First, we forecast the allocation of virtualized resources by the grey control model. We also adjust the boundary conditions of grey prediction model to make the prediction more accurately. Then, the control theory is used to feedback control resource utilization to obtain desired resource utilization levels by regulating the value of allocation of virtualized resources automatically. Our experimental results show the grey control model is effective in the virtualized resource allocation. The control model and algorithm can be applied to other resource allocation. |
doi_str_mv | 10.1109/DASC.2009.41 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5380263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5380263</ieee_id><sourcerecordid>5380263</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18a5517e3cf3c006b25f2ec29ef75e92c08198fdf01e376efeb55ac4a1e853b3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQCNS0Nbu3LnJD7Tem8dkshxGrUJBsUXclTRzI5HpTMmkQv16n6uzOecwdokwRwR7fVOt6rkAsHOFJ2yMSiillUBxysZgCqulFdaM2PjHsQpAlGdsOgzvAICmKISEc_a6SHTkT4ma6HPsO173XU59y_vAq8btc_wg_kxDf0ieBl61be_drxg7_hJTPrg2flLz3e32hxy7N746Dpl2F2wUXDvQ9J8Ttr67Xdf3s-Xj4qGulrOIRucZlk5rNCR9kB6g2AodBHlhKRhNVngo0ZahCYAkTUGBtlo7rxxSqeVWTtjV3zYS0Waf4s6l40bLEkQh5Re-WlQP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xianghua Xu ; Yanna Yan ; Jian Wan</creator><creatorcontrib>Xianghua Xu ; Yanna Yan ; Jian Wan</creatorcontrib><description>In order to improve the resource utilization of virtual machine and control the resource allocation online effectively, in this paper, we present a grey prediction control model used for dynamic resource allocation in virtual machine as workloads changing. First, we forecast the allocation of virtualized resources by the grey control model. We also adjust the boundary conditions of grey prediction model to make the prediction more accurately. Then, the control theory is used to feedback control resource utilization to obtain desired resource utilization levels by regulating the value of allocation of virtualized resources automatically. Our experimental results show the grey control model is effective in the virtualized resource allocation. The control model and algorithm can be applied to other resource allocation.</description><identifier>ISBN: 0769539297</identifier><identifier>ISBN: 9781424454204</identifier><identifier>ISBN: 1424454204</identifier><identifier>ISBN: 9780769539294</identifier><identifier>EISBN: 1424454212</identifier><identifier>EISBN: 9781424454211</identifier><identifier>DOI: 10.1109/DASC.2009.41</identifier><identifier>LCCN: 2009940028</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive allocation ; Adaptive control ; Automatic control ; Boundary conditions ; Control systems ; Control theory ; dynamic control ; grey prediction ; Predictive models ; Programmable control ; Resource management ; resource utilization ; Resource virtualization ; Virtual machining ; Xen virtual machine</subject><ispartof>2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009, p.109-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5380263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5380263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xianghua Xu</creatorcontrib><creatorcontrib>Yanna Yan</creatorcontrib><creatorcontrib>Jian Wan</creatorcontrib><title>Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System</title><title>2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing</title><addtitle>ISDASC</addtitle><description>In order to improve the resource utilization of virtual machine and control the resource allocation online effectively, in this paper, we present a grey prediction control model used for dynamic resource allocation in virtual machine as workloads changing. First, we forecast the allocation of virtualized resources by the grey control model. We also adjust the boundary conditions of grey prediction model to make the prediction more accurately. Then, the control theory is used to feedback control resource utilization to obtain desired resource utilization levels by regulating the value of allocation of virtualized resources automatically. Our experimental results show the grey control model is effective in the virtualized resource allocation. The control model and algorithm can be applied to other resource allocation.</description><subject>adaptive allocation</subject><subject>Adaptive control</subject><subject>Automatic control</subject><subject>Boundary conditions</subject><subject>Control systems</subject><subject>Control theory</subject><subject>dynamic control</subject><subject>grey prediction</subject><subject>Predictive models</subject><subject>Programmable control</subject><subject>Resource management</subject><subject>resource utilization</subject><subject>Resource virtualization</subject><subject>Virtual machining</subject><subject>Xen virtual machine</subject><isbn>0769539297</isbn><isbn>9781424454204</isbn><isbn>1424454204</isbn><isbn>9780769539294</isbn><isbn>1424454212</isbn><isbn>9781424454211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEUQCNS0Nbu3LnJD7Tem8dkshxGrUJBsUXclTRzI5HpTMmkQv16n6uzOecwdokwRwR7fVOt6rkAsHOFJ2yMSiillUBxysZgCqulFdaM2PjHsQpAlGdsOgzvAICmKISEc_a6SHTkT4ma6HPsO173XU59y_vAq8btc_wg_kxDf0ieBl61be_drxg7_hJTPrg2flLz3e32hxy7N746Dpl2F2wUXDvQ9J8Ttr67Xdf3s-Xj4qGulrOIRucZlk5rNCR9kB6g2AodBHlhKRhNVngo0ZahCYAkTUGBtlo7rxxSqeVWTtjV3zYS0Waf4s6l40bLEkQh5Re-WlQP</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Xianghua Xu</creator><creator>Yanna Yan</creator><creator>Jian Wan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System</title><author>Xianghua Xu ; Yanna Yan ; Jian Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18a5517e3cf3c006b25f2ec29ef75e92c08198fdf01e376efeb55ac4a1e853b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>adaptive allocation</topic><topic>Adaptive control</topic><topic>Automatic control</topic><topic>Boundary conditions</topic><topic>Control systems</topic><topic>Control theory</topic><topic>dynamic control</topic><topic>grey prediction</topic><topic>Predictive models</topic><topic>Programmable control</topic><topic>Resource management</topic><topic>resource utilization</topic><topic>Resource virtualization</topic><topic>Virtual machining</topic><topic>Xen virtual machine</topic><toplevel>online_resources</toplevel><creatorcontrib>Xianghua Xu</creatorcontrib><creatorcontrib>Yanna Yan</creatorcontrib><creatorcontrib>Jian Wan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xianghua Xu</au><au>Yanna Yan</au><au>Jian Wan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System</atitle><btitle>2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing</btitle><stitle>ISDASC</stitle><date>2009-12</date><risdate>2009</risdate><spage>109</spage><epage>114</epage><pages>109-114</pages><isbn>0769539297</isbn><isbn>9781424454204</isbn><isbn>1424454204</isbn><isbn>9780769539294</isbn><eisbn>1424454212</eisbn><eisbn>9781424454211</eisbn><abstract>In order to improve the resource utilization of virtual machine and control the resource allocation online effectively, in this paper, we present a grey prediction control model used for dynamic resource allocation in virtual machine as workloads changing. First, we forecast the allocation of virtualized resources by the grey control model. We also adjust the boundary conditions of grey prediction model to make the prediction more accurately. Then, the control theory is used to feedback control resource utilization to obtain desired resource utilization levels by regulating the value of allocation of virtualized resources automatically. Our experimental results show the grey control model is effective in the virtualized resource allocation. The control model and algorithm can be applied to other resource allocation.</abstract><pub>IEEE</pub><doi>10.1109/DASC.2009.41</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769539297 |
ispartof | 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009, p.109-114 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5380263 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | adaptive allocation Adaptive control Automatic control Boundary conditions Control systems Control theory dynamic control grey prediction Predictive models Programmable control Resource management resource utilization Resource virtualization Virtual machining Xen virtual machine |
title | Grey Prediction Control of Adaptive Resources Allocation in Virtualized Computing System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grey%20Prediction%20Control%20of%20Adaptive%20Resources%20Allocation%20in%20Virtualized%20Computing%20System&rft.btitle=2009%20Eighth%20IEEE%20International%20Conference%20on%20Dependable,%20Autonomic%20and%20Secure%20Computing&rft.au=Xianghua%20Xu&rft.date=2009-12&rft.spage=109&rft.epage=114&rft.pages=109-114&rft.isbn=0769539297&rft.isbn_list=9781424454204&rft.isbn_list=1424454204&rft.isbn_list=9780769539294&rft_id=info:doi/10.1109/DASC.2009.41&rft_dat=%3Cieee_6IE%3E5380263%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424454212&rft.eisbn_list=9781424454211&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5380263&rfr_iscdi=true |