Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory

In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2010-02, Vol.31 (2), p.153-155
Hauptverfasser: Taehoon Kim, Deping He, Porter, R., Rivers, D., Kessenich, J., Goda, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 153
container_title IEEE electron device letters
container_volume 31
creator Taehoon Kim
Deping He
Porter, R.
Rivers, D.
Kessenich, J.
Goda, A.
description In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.
doi_str_mv 10.1109/LED.2009.2036871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5378573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5378573</ieee_id><sourcerecordid>1671228524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEEmXhjsTFQkJwyeKPOLGPq7YLSGURtJyjiTNpvSR2sBOk_hT-LS6t9sCBy1jyPM9o7DfLXjJ6zRjV7zfr1TWnVKciSlWxR9mCSalyKkvxOFvQqmC5YLR8mj2L8Z5SVhRVsch-L_0wQoDJ_kKyneb2SHxHvs7W_CDrHs0UvCMrnAKMo3V7Aq4l31LxA9lhj_t0fyBbu3fQ_-3tDmhDEkZ0LTqDkST_IqxsNAEnJCs_gpuIdWQ7N3lBczeQu5u7FbntIR7IZxx8OD7PnnTQR3xxOa-y77fr3fJjvvny4dPyZpMboeSUI3KtVdlVSBsjNReNLBViq0AL0Sg0vG1o2zDJOwAjSmkAFdBGFyVWFKi4yt6e547B_5wxTvWQ9sS-B4d-jnUlRcUlUyfy3X9JVlaMcyV5kdDX_6D3fg7pk2KtGdOKS6ESRM-QCT7GgF09BjtAONaM1qdQ6xRqfQq1voSalDeXuRAN9F0AZ2x88DgvNJdcJO7VmbOI-NBOL1GyEuIP8O6qOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911982538</pqid></control><display><type>article</type><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</creator><creatorcontrib>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</creatorcontrib><description>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2009.2036871</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Associate members ; Circuit properties ; Cycles ; Design. Technologies. Operation analysis. Testing ; Devices ; Digital circuits ; Dopants ; Electric, optical and optoelectronic circuits ; Electron traps ; Electronic circuits ; Electronics ; Exact sciences and technology ; Flash memory ; Flash memory (computers) ; Instability ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Modulation coding ; Origins ; quick electron detrapping (QED) ; random discrete dopant (RDD) effect ; random telegraph signal (RTS) ; Rivers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Stress ; Tail ; Telegraphy ; Tunneling ; tunneling front model</subject><ispartof>IEEE electron device letters, 2010-02, Vol.31 (2), p.153-155</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</citedby><cites>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5378573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5378573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22492523$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Deping He</creatorcontrib><creatorcontrib>Porter, R.</creatorcontrib><creatorcontrib>Rivers, D.</creatorcontrib><creatorcontrib>Kessenich, J.</creatorcontrib><creatorcontrib>Goda, A.</creatorcontrib><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Associate members</subject><subject>Circuit properties</subject><subject>Cycles</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Dopants</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electron traps</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flash memory</subject><subject>Flash memory (computers)</subject><subject>Instability</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Modulation coding</subject><subject>Origins</subject><subject>quick electron detrapping (QED)</subject><subject>random discrete dopant (RDD) effect</subject><subject>random telegraph signal (RTS)</subject><subject>Rivers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Stress</subject><subject>Tail</subject><subject>Telegraphy</subject><subject>Tunneling</subject><subject>tunneling front model</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU2P0zAQhiMEEmXhjsTFQkJwyeKPOLGPq7YLSGURtJyjiTNpvSR2sBOk_hT-LS6t9sCBy1jyPM9o7DfLXjJ6zRjV7zfr1TWnVKciSlWxR9mCSalyKkvxOFvQqmC5YLR8mj2L8Z5SVhRVsch-L_0wQoDJ_kKyneb2SHxHvs7W_CDrHs0UvCMrnAKMo3V7Aq4l31LxA9lhj_t0fyBbu3fQ_-3tDmhDEkZ0LTqDkST_IqxsNAEnJCs_gpuIdWQ7N3lBczeQu5u7FbntIR7IZxx8OD7PnnTQR3xxOa-y77fr3fJjvvny4dPyZpMboeSUI3KtVdlVSBsjNReNLBViq0AL0Sg0vG1o2zDJOwAjSmkAFdBGFyVWFKi4yt6e547B_5wxTvWQ9sS-B4d-jnUlRcUlUyfy3X9JVlaMcyV5kdDX_6D3fg7pk2KtGdOKS6ESRM-QCT7GgF09BjtAONaM1qdQ6xRqfQq1voSalDeXuRAN9F0AZ2x88DgvNJdcJO7VmbOI-NBOL1GyEuIP8O6qOg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Taehoon Kim</creator><creator>Deping He</creator><creator>Porter, R.</creator><creator>Rivers, D.</creator><creator>Kessenich, J.</creator><creator>Goda, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><author>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Associate members</topic><topic>Circuit properties</topic><topic>Cycles</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Dopants</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electron traps</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flash memory</topic><topic>Flash memory (computers)</topic><topic>Instability</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Modulation coding</topic><topic>Origins</topic><topic>quick electron detrapping (QED)</topic><topic>random discrete dopant (RDD) effect</topic><topic>random telegraph signal (RTS)</topic><topic>Rivers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Stress</topic><topic>Tail</topic><topic>Telegraphy</topic><topic>Tunneling</topic><topic>tunneling front model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Deping He</creatorcontrib><creatorcontrib>Porter, R.</creatorcontrib><creatorcontrib>Rivers, D.</creatorcontrib><creatorcontrib>Kessenich, J.</creatorcontrib><creatorcontrib>Goda, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taehoon Kim</au><au>Deping He</au><au>Porter, R.</au><au>Rivers, D.</au><au>Kessenich, J.</au><au>Goda, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>31</volume><issue>2</issue><spage>153</spage><epage>155</epage><pages>153-155</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2009.2036871</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2010-02, Vol.31 (2), p.153-155
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_5378573
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Associate members
Circuit properties
Cycles
Design. Technologies. Operation analysis. Testing
Devices
Digital circuits
Dopants
Electric, optical and optoelectronic circuits
Electron traps
Electronic circuits
Electronics
Exact sciences and technology
Flash memory
Flash memory (computers)
Instability
Integrated circuits
Integrated circuits by function (including memories and processors)
Modulation coding
Origins
quick electron detrapping (QED)
random discrete dopant (RDD) effect
random telegraph signal (RTS)
Rivers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Stability
Stress
Tail
Telegraphy
Tunneling
tunneling front model
title Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Quick%20Electron%20Detrapping%20and%20Random%20Telegraph%20Signal%20and%20Their%20Dependences%20on%20Random%20Discrete%20Dopant%20in%20Sub-40-nm%20NAND%20Flash%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Taehoon%20Kim&rft.date=2010-02-01&rft.volume=31&rft.issue=2&rft.spage=153&rft.epage=155&rft.pages=153-155&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2009.2036871&rft_dat=%3Cproquest_RIE%3E1671228524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911982538&rft_id=info:pmid/&rft_ieee_id=5378573&rfr_iscdi=true