Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory
In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by c...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2010-02, Vol.31 (2), p.153-155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 2 |
container_start_page | 153 |
container_title | IEEE electron device letters |
container_volume | 31 |
creator | Taehoon Kim Deping He Porter, R. Rivers, D. Kessenich, J. Goda, A. |
description | In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory. |
doi_str_mv | 10.1109/LED.2009.2036871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5378573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5378573</ieee_id><sourcerecordid>1671228524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEEmXhjsTFQkJwyeKPOLGPq7YLSGURtJyjiTNpvSR2sBOk_hT-LS6t9sCBy1jyPM9o7DfLXjJ6zRjV7zfr1TWnVKciSlWxR9mCSalyKkvxOFvQqmC5YLR8mj2L8Z5SVhRVsch-L_0wQoDJ_kKyneb2SHxHvs7W_CDrHs0UvCMrnAKMo3V7Aq4l31LxA9lhj_t0fyBbu3fQ_-3tDmhDEkZ0LTqDkST_IqxsNAEnJCs_gpuIdWQ7N3lBczeQu5u7FbntIR7IZxx8OD7PnnTQR3xxOa-y77fr3fJjvvny4dPyZpMboeSUI3KtVdlVSBsjNReNLBViq0AL0Sg0vG1o2zDJOwAjSmkAFdBGFyVWFKi4yt6e547B_5wxTvWQ9sS-B4d-jnUlRcUlUyfy3X9JVlaMcyV5kdDX_6D3fg7pk2KtGdOKS6ESRM-QCT7GgF09BjtAONaM1qdQ6xRqfQq1voSalDeXuRAN9F0AZ2x88DgvNJdcJO7VmbOI-NBOL1GyEuIP8O6qOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911982538</pqid></control><display><type>article</type><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</creator><creatorcontrib>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</creatorcontrib><description>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2009.2036871</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Associate members ; Circuit properties ; Cycles ; Design. Technologies. Operation analysis. Testing ; Devices ; Digital circuits ; Dopants ; Electric, optical and optoelectronic circuits ; Electron traps ; Electronic circuits ; Electronics ; Exact sciences and technology ; Flash memory ; Flash memory (computers) ; Instability ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Modulation coding ; Origins ; quick electron detrapping (QED) ; random discrete dopant (RDD) effect ; random telegraph signal (RTS) ; Rivers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Stress ; Tail ; Telegraphy ; Tunneling ; tunneling front model</subject><ispartof>IEEE electron device letters, 2010-02, Vol.31 (2), p.153-155</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</citedby><cites>FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5378573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5378573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492523$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Deping He</creatorcontrib><creatorcontrib>Porter, R.</creatorcontrib><creatorcontrib>Rivers, D.</creatorcontrib><creatorcontrib>Kessenich, J.</creatorcontrib><creatorcontrib>Goda, A.</creatorcontrib><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Associate members</subject><subject>Circuit properties</subject><subject>Cycles</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Dopants</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electron traps</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flash memory</subject><subject>Flash memory (computers)</subject><subject>Instability</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Modulation coding</subject><subject>Origins</subject><subject>quick electron detrapping (QED)</subject><subject>random discrete dopant (RDD) effect</subject><subject>random telegraph signal (RTS)</subject><subject>Rivers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Stress</subject><subject>Tail</subject><subject>Telegraphy</subject><subject>Tunneling</subject><subject>tunneling front model</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU2P0zAQhiMEEmXhjsTFQkJwyeKPOLGPq7YLSGURtJyjiTNpvSR2sBOk_hT-LS6t9sCBy1jyPM9o7DfLXjJ6zRjV7zfr1TWnVKciSlWxR9mCSalyKkvxOFvQqmC5YLR8mj2L8Z5SVhRVsch-L_0wQoDJ_kKyneb2SHxHvs7W_CDrHs0UvCMrnAKMo3V7Aq4l31LxA9lhj_t0fyBbu3fQ_-3tDmhDEkZ0LTqDkST_IqxsNAEnJCs_gpuIdWQ7N3lBczeQu5u7FbntIR7IZxx8OD7PnnTQR3xxOa-y77fr3fJjvvny4dPyZpMboeSUI3KtVdlVSBsjNReNLBViq0AL0Sg0vG1o2zDJOwAjSmkAFdBGFyVWFKi4yt6e547B_5wxTvWQ9sS-B4d-jnUlRcUlUyfy3X9JVlaMcyV5kdDX_6D3fg7pk2KtGdOKS6ESRM-QCT7GgF09BjtAONaM1qdQ6xRqfQq1voSalDeXuRAN9F0AZ2x88DgvNJdcJO7VmbOI-NBOL1GyEuIP8O6qOg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Taehoon Kim</creator><creator>Deping He</creator><creator>Porter, R.</creator><creator>Rivers, D.</creator><creator>Kessenich, J.</creator><creator>Goda, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100201</creationdate><title>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</title><author>Taehoon Kim ; Deping He ; Porter, R. ; Rivers, D. ; Kessenich, J. ; Goda, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ee29986f7e0bc5923b568eed8a933b8ec2db0db152faac365cae8a0b946e70a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Associate members</topic><topic>Circuit properties</topic><topic>Cycles</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Dopants</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electron traps</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flash memory</topic><topic>Flash memory (computers)</topic><topic>Instability</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Modulation coding</topic><topic>Origins</topic><topic>quick electron detrapping (QED)</topic><topic>random discrete dopant (RDD) effect</topic><topic>random telegraph signal (RTS)</topic><topic>Rivers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Stress</topic><topic>Tail</topic><topic>Telegraphy</topic><topic>Tunneling</topic><topic>tunneling front model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taehoon Kim</creatorcontrib><creatorcontrib>Deping He</creatorcontrib><creatorcontrib>Porter, R.</creatorcontrib><creatorcontrib>Rivers, D.</creatorcontrib><creatorcontrib>Kessenich, J.</creatorcontrib><creatorcontrib>Goda, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taehoon Kim</au><au>Deping He</au><au>Porter, R.</au><au>Rivers, D.</au><au>Kessenich, J.</au><au>Goda, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>31</volume><issue>2</issue><spage>153</spage><epage>155</epage><pages>153-155</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In sub-40-nm flash memory, random discrete dopant (RDD) effect modulates post program/erase (P/E) cycling V t instabilities through quick electron detrapping (QED) as well as random telegraph signal (RTS). In this letter, for the first time, we discuss the QED phenomenon and its physical origin by comparison with RTS phenomenon. P/E cycling stress not only aggravates the RTS but also generates the new phenomenon of QED which results from transiently trapped charges at near-interface defects during program. By applying a new test algorithm, we could successfully extract the QED component from RTS, both of which are modulated by RDD effect and worsen tail bits in multilevel-cell flash memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2009.2036871</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2010-02, Vol.31 (2), p.153-155 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_5378573 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Associate members Circuit properties Cycles Design. Technologies. Operation analysis. Testing Devices Digital circuits Dopants Electric, optical and optoelectronic circuits Electron traps Electronic circuits Electronics Exact sciences and technology Flash memory Flash memory (computers) Instability Integrated circuits Integrated circuits by function (including memories and processors) Modulation coding Origins quick electron detrapping (QED) random discrete dopant (RDD) effect random telegraph signal (RTS) Rivers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stability Stress Tail Telegraphy Tunneling tunneling front model |
title | Comparative Study of Quick Electron Detrapping and Random Telegraph Signal and Their Dependences on Random Discrete Dopant in Sub-40-nm NAND Flash Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Quick%20Electron%20Detrapping%20and%20Random%20Telegraph%20Signal%20and%20Their%20Dependences%20on%20Random%20Discrete%20Dopant%20in%20Sub-40-nm%20NAND%20Flash%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Taehoon%20Kim&rft.date=2010-02-01&rft.volume=31&rft.issue=2&rft.spage=153&rft.epage=155&rft.pages=153-155&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2009.2036871&rft_dat=%3Cproquest_RIE%3E1671228524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911982538&rft_id=info:pmid/&rft_ieee_id=5378573&rfr_iscdi=true |