Adaptive pixel classifier for binary structured light: A probabilistic kernel approach

The paper proposes an adaptive classification mechanism designed for structured light system to improve quality of reconstructed models. We observed that the conventional albedo-based thresholding fails when the lighting condition is not carefully considered. To address this problem, an adaptive mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hsiang-Jen Chien, Chia-Yen Chen, Chi-Fa Chen, Yih-Ming Su
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue
container_start_page 367
container_title
container_volume
creator Hsiang-Jen Chien
Chia-Yen Chen
Chi-Fa Chen
Yih-Ming Su
description The paper proposes an adaptive classification mechanism designed for structured light system to improve quality of reconstructed models. We observed that the conventional albedo-based thresholding fails when the lighting condition is not carefully considered. To address this problem, an adaptive model is proposed. The core idea is to adjust decision boundary during extraction of sequence of binary-coded light patterns by taking the change of lighting condition into account. Base on this idea, a probabilistic kernel-based online learning procedure has been designed and applied to a structured light system. The experimental results show that the proposed method yields more reliable pixel classification as well as increased accuracy of the 3D scanner. It should be noted that the proposed method does not require any modification on conventional Gray-coded patterns.
doi_str_mv 10.1109/IVCNZ.2009.5378378
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5378378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5378378</ieee_id><sourcerecordid>5378378</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-df420e283a4bdb11163a6575cf84acea15ee83532ff30696f54e217e7ced4cb43</originalsourceid><addsrcrecordid>eNpVUEtLAzEYjI-CtfYP6CV_YGu-PDaJt1J8FIpetAcvJZv9YqNruyRb0X_vivUgDAzMMMMwhJwDmwAwezlfzu6fJ5wxO1FCmx4HZGy1AcmllKU15pAMOSgoOGfq6J-n4fjPAwsDcvpTY5nUVpyQcc6vjDHgpuRGDclyWru2ix9I2_iJDfWNyzmGiImGbaJV3Lj0RXOXdr7bJaxpE1_W3RWd0jZtK1fFJuYuevqGadPHXdvLzq_PyCC4JuN4zyPydHP9OLsrFg-389l0UUTQqivqIDlDboSTVV0BQClcqbTywUjn0YFCNEIJHoJgpS2DkshBo_ZYS19JMSIXv70REVdtiu_93NX-MvENs6JaQg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive pixel classifier for binary structured light: A probabilistic kernel approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hsiang-Jen Chien ; Chia-Yen Chen ; Chi-Fa Chen ; Yih-Ming Su</creator><creatorcontrib>Hsiang-Jen Chien ; Chia-Yen Chen ; Chi-Fa Chen ; Yih-Ming Su</creatorcontrib><description>The paper proposes an adaptive classification mechanism designed for structured light system to improve quality of reconstructed models. We observed that the conventional albedo-based thresholding fails when the lighting condition is not carefully considered. To address this problem, an adaptive model is proposed. The core idea is to adjust decision boundary during extraction of sequence of binary-coded light patterns by taking the change of lighting condition into account. Base on this idea, a probabilistic kernel-based online learning procedure has been designed and applied to a structured light system. The experimental results show that the proposed method yields more reliable pixel classification as well as increased accuracy of the 3D scanner. It should be noted that the proposed method does not require any modification on conventional Gray-coded patterns.</description><identifier>ISSN: 2151-2191</identifier><identifier>ISBN: 9781424446971</identifier><identifier>ISBN: 142444697X</identifier><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 9781424446988</identifier><identifier>EISBN: 1424446988</identifier><identifier>DOI: 10.1109/IVCNZ.2009.5378378</identifier><identifier>LCCN: 2009904793</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive structured light ; binary pattern ; Cameras ; Computer science ; Computer vision ; Frequency ; Gray code ; Image reconstruction ; intensity ratio ; Kernel ; Layout ; online learning ; Pixel ; pixel classification ; Reflective binary codes ; Robustness</subject><ispartof>2009 24th International Conference Image and Vision Computing New Zealand, 2009, p.367-372</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5378378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5378378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsiang-Jen Chien</creatorcontrib><creatorcontrib>Chia-Yen Chen</creatorcontrib><creatorcontrib>Chi-Fa Chen</creatorcontrib><creatorcontrib>Yih-Ming Su</creatorcontrib><title>Adaptive pixel classifier for binary structured light: A probabilistic kernel approach</title><title>2009 24th International Conference Image and Vision Computing New Zealand</title><addtitle>IVCNZ</addtitle><description>The paper proposes an adaptive classification mechanism designed for structured light system to improve quality of reconstructed models. We observed that the conventional albedo-based thresholding fails when the lighting condition is not carefully considered. To address this problem, an adaptive model is proposed. The core idea is to adjust decision boundary during extraction of sequence of binary-coded light patterns by taking the change of lighting condition into account. Base on this idea, a probabilistic kernel-based online learning procedure has been designed and applied to a structured light system. The experimental results show that the proposed method yields more reliable pixel classification as well as increased accuracy of the 3D scanner. It should be noted that the proposed method does not require any modification on conventional Gray-coded patterns.</description><subject>adaptive structured light</subject><subject>binary pattern</subject><subject>Cameras</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Frequency</subject><subject>Gray code</subject><subject>Image reconstruction</subject><subject>intensity ratio</subject><subject>Kernel</subject><subject>Layout</subject><subject>online learning</subject><subject>Pixel</subject><subject>pixel classification</subject><subject>Reflective binary codes</subject><subject>Robustness</subject><issn>2151-2191</issn><issn>2151-2205</issn><isbn>9781424446971</isbn><isbn>142444697X</isbn><isbn>9781424446988</isbn><isbn>1424446988</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLAzEYjI-CtfYP6CV_YGu-PDaJt1J8FIpetAcvJZv9YqNruyRb0X_vivUgDAzMMMMwhJwDmwAwezlfzu6fJ5wxO1FCmx4HZGy1AcmllKU15pAMOSgoOGfq6J-n4fjPAwsDcvpTY5nUVpyQcc6vjDHgpuRGDclyWru2ix9I2_iJDfWNyzmGiImGbaJV3Lj0RXOXdr7bJaxpE1_W3RWd0jZtK1fFJuYuevqGadPHXdvLzq_PyCC4JuN4zyPydHP9OLsrFg-389l0UUTQqivqIDlDboSTVV0BQClcqbTywUjn0YFCNEIJHoJgpS2DkshBo_ZYS19JMSIXv70REVdtiu_93NX-MvENs6JaQg</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Hsiang-Jen Chien</creator><creator>Chia-Yen Chen</creator><creator>Chi-Fa Chen</creator><creator>Yih-Ming Su</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Adaptive pixel classifier for binary structured light: A probabilistic kernel approach</title><author>Hsiang-Jen Chien ; Chia-Yen Chen ; Chi-Fa Chen ; Yih-Ming Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-df420e283a4bdb11163a6575cf84acea15ee83532ff30696f54e217e7ced4cb43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>adaptive structured light</topic><topic>binary pattern</topic><topic>Cameras</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Frequency</topic><topic>Gray code</topic><topic>Image reconstruction</topic><topic>intensity ratio</topic><topic>Kernel</topic><topic>Layout</topic><topic>online learning</topic><topic>Pixel</topic><topic>pixel classification</topic><topic>Reflective binary codes</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsiang-Jen Chien</creatorcontrib><creatorcontrib>Chia-Yen Chen</creatorcontrib><creatorcontrib>Chi-Fa Chen</creatorcontrib><creatorcontrib>Yih-Ming Su</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsiang-Jen Chien</au><au>Chia-Yen Chen</au><au>Chi-Fa Chen</au><au>Yih-Ming Su</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive pixel classifier for binary structured light: A probabilistic kernel approach</atitle><btitle>2009 24th International Conference Image and Vision Computing New Zealand</btitle><stitle>IVCNZ</stitle><date>2009-11</date><risdate>2009</risdate><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>2151-2191</issn><eissn>2151-2205</eissn><isbn>9781424446971</isbn><isbn>142444697X</isbn><eisbn>9781424446988</eisbn><eisbn>1424446988</eisbn><abstract>The paper proposes an adaptive classification mechanism designed for structured light system to improve quality of reconstructed models. We observed that the conventional albedo-based thresholding fails when the lighting condition is not carefully considered. To address this problem, an adaptive model is proposed. The core idea is to adjust decision boundary during extraction of sequence of binary-coded light patterns by taking the change of lighting condition into account. Base on this idea, a probabilistic kernel-based online learning procedure has been designed and applied to a structured light system. The experimental results show that the proposed method yields more reliable pixel classification as well as increased accuracy of the 3D scanner. It should be noted that the proposed method does not require any modification on conventional Gray-coded patterns.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2009.5378378</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2191
ispartof 2009 24th International Conference Image and Vision Computing New Zealand, 2009, p.367-372
issn 2151-2191
2151-2205
language eng
recordid cdi_ieee_primary_5378378
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptive structured light
binary pattern
Cameras
Computer science
Computer vision
Frequency
Gray code
Image reconstruction
intensity ratio
Kernel
Layout
online learning
Pixel
pixel classification
Reflective binary codes
Robustness
title Adaptive pixel classifier for binary structured light: A probabilistic kernel approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20pixel%20classifier%20for%20binary%20structured%20light:%20A%20probabilistic%20kernel%20approach&rft.btitle=2009%2024th%20International%20Conference%20Image%20and%20Vision%20Computing%20New%20Zealand&rft.au=Hsiang-Jen%20Chien&rft.date=2009-11&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=2151-2191&rft.eissn=2151-2205&rft.isbn=9781424446971&rft.isbn_list=142444697X&rft_id=info:doi/10.1109/IVCNZ.2009.5378378&rft_dat=%3Cieee_6IE%3E5378378%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446988&rft.eisbn_list=1424446988&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5378378&rfr_iscdi=true