A New Method of Periods' Identification in Hydrologic Series Based on EEMD

Identification of dominant periods is a very important but difficult task in hydrologic time series data analysis. In this paper, for improving the results of periods' identification, a new method, called EEMD-MESA (ensemble empirical mode decomposition-maximum entropy spectral analysis), has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan-Fang Sang, Dong Wang, Ji-Chun Wu, Qing-Ping Zhu, Ling Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 269
container_title
container_volume 4
creator Yan-Fang Sang
Dong Wang
Ji-Chun Wu
Qing-Ping Zhu
Ling Wang
description Identification of dominant periods is a very important but difficult task in hydrologic time series data analysis. In this paper, for improving the results of periods' identification, a new method, called EEMD-MESA (ensemble empirical mode decomposition-maximum entropy spectral analysis), has been proposed, whose main idea is identifying the main intrinsic mode functions (MIMFs) in hydrologic series firstly, and then by using MESA to identify periods in each MIMFs, all periods in the hydrologic series can be gotten finally. By applying to an observed runoff series, advantages of the new method have been verified. Analyses results show that EEMD-MESA is as better as MSSA but much better than other methods (FFT and MESA); While compared with MSSA, EEMD-MESA is more convenient and time-saving. Therefore, the EEMD-MESA method would be more applicable to practical hydrologic works.
doi_str_mv 10.1109/AICI.2009.236
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5376358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5376358</ieee_id><sourcerecordid>5376358</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fa23929feb1efb3e9a1b13b83f08cd6c3327c34ade805e855ef0854564a0e7293</originalsourceid><addsrcrecordid>eNotjD1PwzAURY1QJUjpyMTijSnB9vPnGEKgQS0gAXPlJM9gVBKUREL99wTBdHV0z72EnHOWcc7cVV4VVSYYc5kAfUQSZrRTYLl2xyThUkgJFpRZkORXcjOAOyGrcfxgjHGjJQg4Jfc5fcBvusXpvW9pH-gTDrFvx0tatdhNMcTGT7HvaOzo-tAO_b5_iw19ni0c6bUfcV51tCy3N2dkEfx-xNV_LsnrbflSrNPN411V5Js0cqOmNHgBTriANcdQAzrPaw61hcBs0-oGQJgGpG_RMoVWKZwLJZWWnqERDpbk4u83IuLua4iffjjsFBgNysIP2vVM_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Method of Periods' Identification in Hydrologic Series Based on EEMD</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yan-Fang Sang ; Dong Wang ; Ji-Chun Wu ; Qing-Ping Zhu ; Ling Wang</creator><creatorcontrib>Yan-Fang Sang ; Dong Wang ; Ji-Chun Wu ; Qing-Ping Zhu ; Ling Wang</creatorcontrib><description>Identification of dominant periods is a very important but difficult task in hydrologic time series data analysis. In this paper, for improving the results of periods' identification, a new method, called EEMD-MESA (ensemble empirical mode decomposition-maximum entropy spectral analysis), has been proposed, whose main idea is identifying the main intrinsic mode functions (MIMFs) in hydrologic series firstly, and then by using MESA to identify periods in each MIMFs, all periods in the hydrologic series can be gotten finally. By applying to an observed runoff series, advantages of the new method have been verified. Analyses results show that EEMD-MESA is as better as MSSA but much better than other methods (FFT and MESA); While compared with MSSA, EEMD-MESA is more convenient and time-saving. Therefore, the EEMD-MESA method would be more applicable to practical hydrologic works.</description><identifier>ISBN: 1424438357</identifier><identifier>ISBN: 9781424438358</identifier><identifier>EISBN: 0769538169</identifier><identifier>EISBN: 9780769538167</identifier><identifier>DOI: 10.1109/AICI.2009.236</identifier><identifier>LCCN: 2009938339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Data engineering ; Entropy ; Hydrology ; Independent component analysis ; Noise reduction ; Spectral analysis ; Time series analysis ; Water resources ; Wavelet analysis</subject><ispartof>2009 International Conference on Artificial Intelligence and Computational Intelligence, 2009, Vol.4, p.269-273</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5376358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5376358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan-Fang Sang</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Ji-Chun Wu</creatorcontrib><creatorcontrib>Qing-Ping Zhu</creatorcontrib><creatorcontrib>Ling Wang</creatorcontrib><title>A New Method of Periods' Identification in Hydrologic Series Based on EEMD</title><title>2009 International Conference on Artificial Intelligence and Computational Intelligence</title><addtitle>AICI</addtitle><description>Identification of dominant periods is a very important but difficult task in hydrologic time series data analysis. In this paper, for improving the results of periods' identification, a new method, called EEMD-MESA (ensemble empirical mode decomposition-maximum entropy spectral analysis), has been proposed, whose main idea is identifying the main intrinsic mode functions (MIMFs) in hydrologic series firstly, and then by using MESA to identify periods in each MIMFs, all periods in the hydrologic series can be gotten finally. By applying to an observed runoff series, advantages of the new method have been verified. Analyses results show that EEMD-MESA is as better as MSSA but much better than other methods (FFT and MESA); While compared with MSSA, EEMD-MESA is more convenient and time-saving. Therefore, the EEMD-MESA method would be more applicable to practical hydrologic works.</description><subject>Data analysis</subject><subject>Data engineering</subject><subject>Entropy</subject><subject>Hydrology</subject><subject>Independent component analysis</subject><subject>Noise reduction</subject><subject>Spectral analysis</subject><subject>Time series analysis</subject><subject>Water resources</subject><subject>Wavelet analysis</subject><isbn>1424438357</isbn><isbn>9781424438358</isbn><isbn>0769538169</isbn><isbn>9780769538167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjD1PwzAURY1QJUjpyMTijSnB9vPnGEKgQS0gAXPlJM9gVBKUREL99wTBdHV0z72EnHOWcc7cVV4VVSYYc5kAfUQSZrRTYLl2xyThUkgJFpRZkORXcjOAOyGrcfxgjHGjJQg4Jfc5fcBvusXpvW9pH-gTDrFvx0tatdhNMcTGT7HvaOzo-tAO_b5_iw19ni0c6bUfcV51tCy3N2dkEfx-xNV_LsnrbflSrNPN411V5Js0cqOmNHgBTriANcdQAzrPaw61hcBs0-oGQJgGpG_RMoVWKZwLJZWWnqERDpbk4u83IuLua4iffjjsFBgNysIP2vVM_A</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Yan-Fang Sang</creator><creator>Dong Wang</creator><creator>Ji-Chun Wu</creator><creator>Qing-Ping Zhu</creator><creator>Ling Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>A New Method of Periods' Identification in Hydrologic Series Based on EEMD</title><author>Yan-Fang Sang ; Dong Wang ; Ji-Chun Wu ; Qing-Ping Zhu ; Ling Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fa23929feb1efb3e9a1b13b83f08cd6c3327c34ade805e855ef0854564a0e7293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data analysis</topic><topic>Data engineering</topic><topic>Entropy</topic><topic>Hydrology</topic><topic>Independent component analysis</topic><topic>Noise reduction</topic><topic>Spectral analysis</topic><topic>Time series analysis</topic><topic>Water resources</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan-Fang Sang</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Ji-Chun Wu</creatorcontrib><creatorcontrib>Qing-Ping Zhu</creatorcontrib><creatorcontrib>Ling Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan-Fang Sang</au><au>Dong Wang</au><au>Ji-Chun Wu</au><au>Qing-Ping Zhu</au><au>Ling Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Method of Periods' Identification in Hydrologic Series Based on EEMD</atitle><btitle>2009 International Conference on Artificial Intelligence and Computational Intelligence</btitle><stitle>AICI</stitle><date>2009-11</date><risdate>2009</risdate><volume>4</volume><spage>269</spage><epage>273</epage><pages>269-273</pages><isbn>1424438357</isbn><isbn>9781424438358</isbn><eisbn>0769538169</eisbn><eisbn>9780769538167</eisbn><abstract>Identification of dominant periods is a very important but difficult task in hydrologic time series data analysis. In this paper, for improving the results of periods' identification, a new method, called EEMD-MESA (ensemble empirical mode decomposition-maximum entropy spectral analysis), has been proposed, whose main idea is identifying the main intrinsic mode functions (MIMFs) in hydrologic series firstly, and then by using MESA to identify periods in each MIMFs, all periods in the hydrologic series can be gotten finally. By applying to an observed runoff series, advantages of the new method have been verified. Analyses results show that EEMD-MESA is as better as MSSA but much better than other methods (FFT and MESA); While compared with MSSA, EEMD-MESA is more convenient and time-saving. Therefore, the EEMD-MESA method would be more applicable to practical hydrologic works.</abstract><pub>IEEE</pub><doi>10.1109/AICI.2009.236</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424438357
ispartof 2009 International Conference on Artificial Intelligence and Computational Intelligence, 2009, Vol.4, p.269-273
issn
language eng
recordid cdi_ieee_primary_5376358
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data analysis
Data engineering
Entropy
Hydrology
Independent component analysis
Noise reduction
Spectral analysis
Time series analysis
Water resources
Wavelet analysis
title A New Method of Periods' Identification in Hydrologic Series Based on EEMD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Method%20of%20Periods'%20Identification%20in%20Hydrologic%20Series%20Based%20on%20EEMD&rft.btitle=2009%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Computational%20Intelligence&rft.au=Yan-Fang%20Sang&rft.date=2009-11&rft.volume=4&rft.spage=269&rft.epage=273&rft.pages=269-273&rft.isbn=1424438357&rft.isbn_list=9781424438358&rft_id=info:doi/10.1109/AICI.2009.236&rft_dat=%3Cieee_6IE%3E5376358%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538169&rft.eisbn_list=9780769538167&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5376358&rfr_iscdi=true