A support vector machine-based pattern recognizer using selected features for control chart patterns analysis
In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulatio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | |
container_start_page | 419 |
container_title | |
container_volume | |
creator | Cheng, C.S. Cheng, H.P. Huang, K.K. |
description | In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs. |
doi_str_mv | 10.1109/IEEM.2009.5373318 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5373318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5373318</ieee_id><sourcerecordid>5373318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM2jEm3pByA2_oEUPxI_llVVoFIRG5DYVY5z3QalSWQ7SOXrMSJidRczc3RnELqjZEkp0Q_bzeZlyQjRy4JLzqm6QAstFc1ZnudKEnWJpowWMuOCfVyh2SgILa__BUonaPbL0KRQRN6gRQifhBDKlGBaTNFphcPQ952P-Ats7Dw-GXusW8hKE6DCvYkRfIs92O7Q1t_g8RDq9oADNMmfHA5MHDwE7FLYdm30XYPt0STiGA7YtKY5hzrcookzTYDFeOfo_XHztn7Odq9P2_Vql1nGeMxklXowrQVxpSsooQK0TJUNNSUrQZcqT88bqpiiXLFS8qqyQjojiDaVK_kc3f9xawDY974-GX_ejzPyH0HAYdI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</creator><creatorcontrib>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</creatorcontrib><description>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</description><identifier>ISSN: 2157-3611</identifier><identifier>ISBN: 1424448697</identifier><identifier>ISBN: 9781424448692</identifier><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781424448708</identifier><identifier>EISBN: 1424448700</identifier><identifier>DOI: 10.1109/IEEM.2009.5373318</identifier><identifier>LCCN: 2009905807</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Control charts ; Data mining ; Feature extraction ; features ; Monitoring ; Pattern analysis ; Pattern recognition ; Stability ; Support vector machines ; SVM ; Testing</subject><ispartof>2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, p.419-423</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5373318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5373318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, C.S.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><creatorcontrib>Huang, K.K.</creatorcontrib><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><title>2009 IEEE International Conference on Industrial Engineering and Engineering Management</title><addtitle>IEEM</addtitle><description>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</description><subject>Artificial neural networks</subject><subject>Control charts</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>features</subject><subject>Monitoring</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Stability</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Testing</subject><issn>2157-3611</issn><issn>2157-362X</issn><isbn>1424448697</isbn><isbn>9781424448692</isbn><isbn>9781424448708</isbn><isbn>1424448700</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM2jEm3pByA2_oEUPxI_llVVoFIRG5DYVY5z3QalSWQ7SOXrMSJidRczc3RnELqjZEkp0Q_bzeZlyQjRy4JLzqm6QAstFc1ZnudKEnWJpowWMuOCfVyh2SgILa__BUonaPbL0KRQRN6gRQifhBDKlGBaTNFphcPQ952P-Ats7Dw-GXusW8hKE6DCvYkRfIs92O7Q1t_g8RDq9oADNMmfHA5MHDwE7FLYdm30XYPt0STiGA7YtKY5hzrcookzTYDFeOfo_XHztn7Odq9P2_Vql1nGeMxklXowrQVxpSsooQK0TJUNNSUrQZcqT88bqpiiXLFS8qqyQjojiDaVK_kc3f9xawDY974-GX_ejzPyH0HAYdI</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Cheng, C.S.</creator><creator>Cheng, H.P.</creator><creator>Huang, K.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><author>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Control charts</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>features</topic><topic>Monitoring</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Stability</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, C.S.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><creatorcontrib>Huang, K.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, C.S.</au><au>Cheng, H.P.</au><au>Huang, K.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</atitle><btitle>2009 IEEE International Conference on Industrial Engineering and Engineering Management</btitle><stitle>IEEM</stitle><date>2009-12</date><risdate>2009</risdate><spage>419</spage><epage>423</epage><pages>419-423</pages><issn>2157-3611</issn><eissn>2157-362X</eissn><isbn>1424448697</isbn><isbn>9781424448692</isbn><eisbn>9781424448708</eisbn><eisbn>1424448700</eisbn><abstract>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2009.5373318</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-3611 |
ispartof | 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, p.419-423 |
issn | 2157-3611 2157-362X |
language | eng |
recordid | cdi_ieee_primary_5373318 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Control charts Data mining Feature extraction features Monitoring Pattern analysis Pattern recognition Stability Support vector machines SVM Testing |
title | A support vector machine-based pattern recognizer using selected features for control chart patterns analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20support%20vector%20machine-based%20pattern%20recognizer%20using%20selected%20features%20for%20control%20chart%20patterns%20analysis&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management&rft.au=Cheng,%20C.S.&rft.date=2009-12&rft.spage=419&rft.epage=423&rft.pages=419-423&rft.issn=2157-3611&rft.eissn=2157-362X&rft.isbn=1424448697&rft.isbn_list=9781424448692&rft_id=info:doi/10.1109/IEEM.2009.5373318&rft_dat=%3Cieee_6IE%3E5373318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424448708&rft.eisbn_list=1424448700&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5373318&rfr_iscdi=true |