A support vector machine-based pattern recognizer using selected features for control chart patterns analysis

In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, C.S., Cheng, H.P., Huang, K.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue
container_start_page 419
container_title
container_volume
creator Cheng, C.S.
Cheng, H.P.
Huang, K.K.
description In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.
doi_str_mv 10.1109/IEEM.2009.5373318
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5373318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5373318</ieee_id><sourcerecordid>5373318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM2jEm3pByA2_oEUPxI_llVVoFIRG5DYVY5z3QalSWQ7SOXrMSJidRczc3RnELqjZEkp0Q_bzeZlyQjRy4JLzqm6QAstFc1ZnudKEnWJpowWMuOCfVyh2SgILa__BUonaPbL0KRQRN6gRQifhBDKlGBaTNFphcPQ952P-Ats7Dw-GXusW8hKE6DCvYkRfIs92O7Q1t_g8RDq9oADNMmfHA5MHDwE7FLYdm30XYPt0STiGA7YtKY5hzrcookzTYDFeOfo_XHztn7Odq9P2_Vql1nGeMxklXowrQVxpSsooQK0TJUNNSUrQZcqT88bqpiiXLFS8qqyQjojiDaVK_kc3f9xawDY974-GX_ejzPyH0HAYdI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</creator><creatorcontrib>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</creatorcontrib><description>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</description><identifier>ISSN: 2157-3611</identifier><identifier>ISBN: 1424448697</identifier><identifier>ISBN: 9781424448692</identifier><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781424448708</identifier><identifier>EISBN: 1424448700</identifier><identifier>DOI: 10.1109/IEEM.2009.5373318</identifier><identifier>LCCN: 2009905807</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Control charts ; Data mining ; Feature extraction ; features ; Monitoring ; Pattern analysis ; Pattern recognition ; Stability ; Support vector machines ; SVM ; Testing</subject><ispartof>2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, p.419-423</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5373318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5373318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, C.S.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><creatorcontrib>Huang, K.K.</creatorcontrib><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><title>2009 IEEE International Conference on Industrial Engineering and Engineering Management</title><addtitle>IEEM</addtitle><description>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</description><subject>Artificial neural networks</subject><subject>Control charts</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>features</subject><subject>Monitoring</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Stability</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Testing</subject><issn>2157-3611</issn><issn>2157-362X</issn><isbn>1424448697</isbn><isbn>9781424448692</isbn><isbn>9781424448708</isbn><isbn>1424448700</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM2jEm3pByA2_oEUPxI_llVVoFIRG5DYVY5z3QalSWQ7SOXrMSJidRczc3RnELqjZEkp0Q_bzeZlyQjRy4JLzqm6QAstFc1ZnudKEnWJpowWMuOCfVyh2SgILa__BUonaPbL0KRQRN6gRQifhBDKlGBaTNFphcPQ952P-Ats7Dw-GXusW8hKE6DCvYkRfIs92O7Q1t_g8RDq9oADNMmfHA5MHDwE7FLYdm30XYPt0STiGA7YtKY5hzrcookzTYDFeOfo_XHztn7Odq9P2_Vql1nGeMxklXowrQVxpSsooQK0TJUNNSUrQZcqT88bqpiiXLFS8qqyQjojiDaVK_kc3f9xawDY974-GX_ejzPyH0HAYdI</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Cheng, C.S.</creator><creator>Cheng, H.P.</creator><creator>Huang, K.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</title><author>Cheng, C.S. ; Cheng, H.P. ; Huang, K.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-7d44829960fbf51016e97487a1ab2be9b84296a18281382b73ddc67fa609adfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Control charts</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>features</topic><topic>Monitoring</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Stability</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, C.S.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><creatorcontrib>Huang, K.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, C.S.</au><au>Cheng, H.P.</au><au>Huang, K.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A support vector machine-based pattern recognizer using selected features for control chart patterns analysis</atitle><btitle>2009 IEEE International Conference on Industrial Engineering and Engineering Management</btitle><stitle>IEEM</stitle><date>2009-12</date><risdate>2009</risdate><spage>419</spage><epage>423</epage><pages>419-423</pages><issn>2157-3611</issn><eissn>2157-362X</eissn><isbn>1424448697</isbn><isbn>9781424448692</isbn><eisbn>9781424448708</eisbn><eisbn>1424448700</eisbn><abstract>In this paper we review two implementation modes of control chart pattern recognition and introduce a new research problem concerning pattern displacement problem in the ¿recognition only when necessary¿ mode. A set of features are developed by taking the pattern displacement into account. Simulation studies indicate that an SVM-based pattern recognizer with features as input vector performs significantly better than that of using raw data as inputs.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2009.5373318</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-3611
ispartof 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, p.419-423
issn 2157-3611
2157-362X
language eng
recordid cdi_ieee_primary_5373318
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Control charts
Data mining
Feature extraction
features
Monitoring
Pattern analysis
Pattern recognition
Stability
Support vector machines
SVM
Testing
title A support vector machine-based pattern recognizer using selected features for control chart patterns analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20support%20vector%20machine-based%20pattern%20recognizer%20using%20selected%20features%20for%20control%20chart%20patterns%20analysis&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management&rft.au=Cheng,%20C.S.&rft.date=2009-12&rft.spage=419&rft.epage=423&rft.pages=419-423&rft.issn=2157-3611&rft.eissn=2157-362X&rft.isbn=1424448697&rft.isbn_list=9781424448692&rft_id=info:doi/10.1109/IEEM.2009.5373318&rft_dat=%3Cieee_6IE%3E5373318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424448708&rft.eisbn_list=1424448700&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5373318&rfr_iscdi=true