Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers

A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2010-10, Vol.40 (5), p.1267-1279
Hauptverfasser: Tarabalka, Y, Chanussot, J, Benediktsson, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 5
container_start_page 1267
container_title IEEE transactions on cybernetics
container_volume 40
creator Tarabalka, Y
Chanussot, J
Benediktsson, J A
description A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed, and the most reliable classified pixels are chosen as markers. Each classification-derived marker is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained. Furthermore, the classification map is refined using the results of a pixelwise classification and a majority voting within the spatially connected regions. Experimental results are presented for three hyperspectral airborne images. The use of different dissimilarity measures for the construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.
doi_str_mv 10.1109/TSMCB.2009.2037132
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5371866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5371866</ieee_id><sourcerecordid>2717301631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-d1415d0920b5ac2117e0afd31240d7e9e8da4376420e5700cfa940b8d1255a813</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEYoaBFwAJWWIBLDJc_8XxslR0OlIrFp1ZW27iFA-JnbETUFe8Og4pXbBgY1vH3zny9cmy1xiuMQb56W63XX6-JgAyLVRgSp5kl1gynAOT5Gk6Q0lzxrC8yF7E-ACJBCmeZxfJwzFlxWX2a2cOnXGDHqx3SLsaLVsdo21sNUu-Qetjb0LsTTUE3aLbTh9MRPfRugPaWme7sUO7Xjs3CSsfTBzQTfA_HVoF36HFOPguZVW6bY9oZ9qUY2q01eF7Sn2ZPWt0G82r036V3a--3C3X-ebrze1ysckrTsSQ15hhXoMksOe6IhgLA7qpKSYMamGkKWvNqCgYAcMFQNVoyWBf1phwrktMr7KPc-433ao-2E6Ho_LaqvVioyYt_YgoS1b-mNj3M9sH_zimcVRnY2XaVjvjx6gE57gATmQiP_yXxEVqhXMmaELf_YM--DG4NLPCQAShAvgUSGaqCj7GYJrzWzGoqXT1p3Q1la5OpSfT21P0uO9Mfbb8bTkBb2bAGmPO1zy5y6KgvwFIyK-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027237059</pqid></control><display><type>article</type><title>Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers</title><source>IEEE/IET Electronic Library</source><creator>Tarabalka, Y ; Chanussot, J ; Benediktsson, J A</creator><creatorcontrib>Tarabalka, Y ; Chanussot, J ; Benediktsson, J A</creatorcontrib><description>A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed, and the most reliable classified pixels are chosen as markers. Each classification-derived marker is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained. Furthermore, the classification map is refined using the results of a pixelwise classification and a majority voting within the spatially connected regions. Experimental results are presented for three hyperspectral airborne images. The use of different dissimilarity measures for the construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2009.2037132</identifier><identifier>PMID: 20051346</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Biomarkers - analysis ; Classification ; Computer Science ; Construction ; Cybernetics ; Decision Support Techniques ; Environmental Monitoring - methods ; Forests ; hyperspectral images ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; Image Processing ; Image segmentation ; Laboratories ; Layout ; Machine vision ; marker selection ; Markers ; minimum spanning forest (MSF) ; Pattern Recognition, Automated - methods ; Pixel ; Pixels ; Segmentation ; Spectrum Analysis - methods ; Speech ; Studies ; Trees - chemistry ; Trees - classification ; Voting</subject><ispartof>IEEE transactions on cybernetics, 2010-10, Vol.40 (5), p.1267-1279</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-d1415d0920b5ac2117e0afd31240d7e9e8da4376420e5700cfa940b8d1255a813</citedby><cites>FETCH-LOGICAL-c527t-d1415d0920b5ac2117e0afd31240d7e9e8da4376420e5700cfa940b8d1255a813</cites><orcidid>0000-0003-4817-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5371866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5371866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20051346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00578848$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarabalka, Y</creatorcontrib><creatorcontrib>Chanussot, J</creatorcontrib><creatorcontrib>Benediktsson, J A</creatorcontrib><title>Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed, and the most reliable classified pixels are chosen as markers. Each classification-derived marker is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained. Furthermore, the classification map is refined using the results of a pixelwise classification and a majority voting within the spatially connected regions. Experimental results are presented for three hyperspectral airborne images. The use of different dissimilarity measures for the construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomarkers - analysis</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Cybernetics</subject><subject>Decision Support Techniques</subject><subject>Environmental Monitoring - methods</subject><subject>Forests</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>Image Processing</subject><subject>Image segmentation</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Machine vision</subject><subject>marker selection</subject><subject>Markers</subject><subject>minimum spanning forest (MSF)</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Segmentation</subject><subject>Spectrum Analysis - methods</subject><subject>Speech</subject><subject>Studies</subject><subject>Trees - chemistry</subject><subject>Trees - classification</subject><subject>Voting</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc2O0zAUhSMEYoaBFwAJWWIBLDJc_8XxslR0OlIrFp1ZW27iFA-JnbETUFe8Og4pXbBgY1vH3zny9cmy1xiuMQb56W63XX6-JgAyLVRgSp5kl1gynAOT5Gk6Q0lzxrC8yF7E-ACJBCmeZxfJwzFlxWX2a2cOnXGDHqx3SLsaLVsdo21sNUu-Qetjb0LsTTUE3aLbTh9MRPfRugPaWme7sUO7Xjs3CSsfTBzQTfA_HVoF36HFOPguZVW6bY9oZ9qUY2q01eF7Sn2ZPWt0G82r036V3a--3C3X-ebrze1ysckrTsSQ15hhXoMksOe6IhgLA7qpKSYMamGkKWvNqCgYAcMFQNVoyWBf1phwrktMr7KPc-433ao-2E6Ho_LaqvVioyYt_YgoS1b-mNj3M9sH_zimcVRnY2XaVjvjx6gE57gATmQiP_yXxEVqhXMmaELf_YM--DG4NLPCQAShAvgUSGaqCj7GYJrzWzGoqXT1p3Q1la5OpSfT21P0uO9Mfbb8bTkBb2bAGmPO1zy5y6KgvwFIyK-I</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Tarabalka, Y</creator><creator>Chanussot, J</creator><creator>Benediktsson, J A</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid></search><sort><creationdate>20101001</creationdate><title>Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers</title><author>Tarabalka, Y ; Chanussot, J ; Benediktsson, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-d1415d0920b5ac2117e0afd31240d7e9e8da4376420e5700cfa940b8d1255a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomarkers - analysis</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Cybernetics</topic><topic>Decision Support Techniques</topic><topic>Environmental Monitoring - methods</topic><topic>Forests</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>Image Processing</topic><topic>Image segmentation</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Machine vision</topic><topic>marker selection</topic><topic>Markers</topic><topic>minimum spanning forest (MSF)</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Segmentation</topic><topic>Spectrum Analysis - methods</topic><topic>Speech</topic><topic>Studies</topic><topic>Trees - chemistry</topic><topic>Trees - classification</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarabalka, Y</creatorcontrib><creatorcontrib>Chanussot, J</creatorcontrib><creatorcontrib>Benediktsson, J A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarabalka, Y</au><au>Chanussot, J</au><au>Benediktsson, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>40</volume><issue>5</issue><spage>1267</spage><epage>1279</epage><pages>1267-1279</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>A new method for segmentation and classification of hyperspectral images is proposed. The method is based on the construction of a minimum spanning forest (MSF) from region markers. Markers are defined automatically from classification results. For this purpose, pixelwise classification is performed, and the most reliable classified pixels are chosen as markers. Each classification-derived marker is associated with a class label. Each tree in the MSF grown from a marker forms a region in the segmentation map. By assigning a class of each marker to all the pixels within the region grown from this marker, a spectral-spatial classification map is obtained. Furthermore, the classification map is refined using the results of a pixelwise classification and a majority voting within the spatially connected regions. Experimental results are presented for three hyperspectral airborne images. The use of different dissimilarity measures for the construction of the MSF is investigated. The proposed scheme improves classification accuracies, when compared to previously proposed classification techniques, and provides accurate segmentation and classification maps.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20051346</pmid><doi>10.1109/TSMCB.2009.2037132</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2010-10, Vol.40 (5), p.1267-1279
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_ieee_primary_5371866
source IEEE/IET Electronic Library
subjects Algorithms
Artificial Intelligence
Biomarkers - analysis
Classification
Computer Science
Construction
Cybernetics
Decision Support Techniques
Environmental Monitoring - methods
Forests
hyperspectral images
Hyperspectral imaging
Hyperspectral sensors
Image classification
Image Processing
Image segmentation
Laboratories
Layout
Machine vision
marker selection
Markers
minimum spanning forest (MSF)
Pattern Recognition, Automated - methods
Pixel
Pixels
Segmentation
Spectrum Analysis - methods
Speech
Studies
Trees - chemistry
Trees - classification
Voting
title Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20and%20Classification%20of%20Hyperspectral%20Images%20Using%20Minimum%20Spanning%20Forest%20Grown%20From%20Automatically%20Selected%20Markers&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Tarabalka,%20Y&rft.date=2010-10-01&rft.volume=40&rft.issue=5&rft.spage=1267&rft.epage=1279&rft.pages=1267-1279&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2009.2037132&rft_dat=%3Cproquest_RIE%3E2717301631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027237059&rft_id=info:pmid/20051346&rft_ieee_id=5371866&rfr_iscdi=true