Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection

Human brain can detect faces from the images constructed in their eyes. The face detection is a computerize method of locating the face in the digital image. It is an important challenge to locate faces from uncontrolled and indistinguishable background of the digital image. This paper presents huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tayyab, M., Zafar, M.F., Ali, S.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 387
container_title
container_volume
creator Tayyab, M.
Zafar, M.F.
Ali, S.S.
description Human brain can detect faces from the images constructed in their eyes. The face detection is a computerize method of locating the face in the digital image. It is an important challenge to locate faces from uncontrolled and indistinguishable background of the digital image. This paper presents human face detection from the colored images. Skin color segmentation is used for localizations of skin colored components in the digital image. The features are extracted by using 2D-Discrete Cosine Transform (DCT2) and 2D-Discrete Wavelet Transform (DWT2). The Back Propagation neural Network (BPN) is used for training and testing purposes. In this research, three sets of images: 50, 100 and 180 have been used for experimentation. About 60 % of the images were used in training phase and rests were used for testing purpose. This paper presents the performance comparison of DCT2 and DWT2 used for feature extraction. The best detection rate of 84.03 % with the false positive rate of 5.05% was obtained using DCT2 as compare to DWT2 which provided detection rate of 83.61 % with the false positive rate of 8.43%.
doi_str_mv 10.1109/SoCPaR.2009.82
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5370979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5370979</ieee_id><sourcerecordid>5370979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e5009132f9d3c30e58ab58d5ea5cd7d28358f063af8f7bfd3d4b38eefdc133be3</originalsourceid><addsrcrecordid>eNpVj7FOwzAQho0QErR0ZWHxC6TYvji2R0gpIFVQQRFj5cRnyaKNKzuA2Hh0UsEAy_8N_3d3OkLOOJtyzszFU6yX9nEqGDNTLQ7IiKnKSNDKqEMy4qUoSwnA5DGZ5BwaJipV6VKYE_K1xORj2tquRVrH7c6mkGNHo6diVsxCbhP2-yaHDukq2S7vdWo79094se-4wf6PMQS9x7dkNwP6j5heiyub0dG5HU7NhqG2D7E7JUfebjJOfjkmz_PrVX1bLB5u7urLRRG4kn2BcviNg_DGQQsMpbaN1E6ila1TTmiQ2rMKrNdeNd6BKxvQiN61HKBBGJPzn70BEde7FLY2fa4lKGaUgW83mGFr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tayyab, M. ; Zafar, M.F. ; Ali, S.S.</creator><creatorcontrib>Tayyab, M. ; Zafar, M.F. ; Ali, S.S.</creatorcontrib><description>Human brain can detect faces from the images constructed in their eyes. The face detection is a computerize method of locating the face in the digital image. It is an important challenge to locate faces from uncontrolled and indistinguishable background of the digital image. This paper presents human face detection from the colored images. Skin color segmentation is used for localizations of skin colored components in the digital image. The features are extracted by using 2D-Discrete Cosine Transform (DCT2) and 2D-Discrete Wavelet Transform (DWT2). The Back Propagation neural Network (BPN) is used for training and testing purposes. In this research, three sets of images: 50, 100 and 180 have been used for experimentation. About 60 % of the images were used in training phase and rests were used for testing purpose. This paper presents the performance comparison of DCT2 and DWT2 used for feature extraction. The best detection rate of 84.03 % with the false positive rate of 5.05% was obtained using DCT2 as compare to DWT2 which provided detection rate of 83.61 % with the false positive rate of 8.43%.</description><identifier>ISBN: 1424453305</identifier><identifier>ISBN: 9781424453306</identifier><identifier>EISBN: 0769538797</identifier><identifier>EISBN: 9780769538792</identifier><identifier>DOI: 10.1109/SoCPaR.2009.82</identifier><language>eng</language><publisher>IEEE</publisher><subject>2D-Discrete Cosine Transform ; Back propagation Neural Network ; Biological neural networks ; Digital images ; Discrete wavelet transforms ; Face detection ; Face localization ; Feature extraction ; Humans ; Neural networks ; Skin ; Skin color segmentation ; Testing ; Wavelet transforms</subject><ispartof>2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.387-392</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5370979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5370979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tayyab, M.</creatorcontrib><creatorcontrib>Zafar, M.F.</creatorcontrib><creatorcontrib>Ali, S.S.</creatorcontrib><title>Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection</title><title>2009 International Conference of Soft Computing and Pattern Recognition</title><addtitle>SOCPAR</addtitle><description>Human brain can detect faces from the images constructed in their eyes. The face detection is a computerize method of locating the face in the digital image. It is an important challenge to locate faces from uncontrolled and indistinguishable background of the digital image. This paper presents human face detection from the colored images. Skin color segmentation is used for localizations of skin colored components in the digital image. The features are extracted by using 2D-Discrete Cosine Transform (DCT2) and 2D-Discrete Wavelet Transform (DWT2). The Back Propagation neural Network (BPN) is used for training and testing purposes. In this research, three sets of images: 50, 100 and 180 have been used for experimentation. About 60 % of the images were used in training phase and rests were used for testing purpose. This paper presents the performance comparison of DCT2 and DWT2 used for feature extraction. The best detection rate of 84.03 % with the false positive rate of 5.05% was obtained using DCT2 as compare to DWT2 which provided detection rate of 83.61 % with the false positive rate of 8.43%.</description><subject>2D-Discrete Cosine Transform</subject><subject>Back propagation Neural Network</subject><subject>Biological neural networks</subject><subject>Digital images</subject><subject>Discrete wavelet transforms</subject><subject>Face detection</subject><subject>Face localization</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Skin</subject><subject>Skin color segmentation</subject><subject>Testing</subject><subject>Wavelet transforms</subject><isbn>1424453305</isbn><isbn>9781424453306</isbn><isbn>0769538797</isbn><isbn>9780769538792</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj7FOwzAQho0QErR0ZWHxC6TYvji2R0gpIFVQQRFj5cRnyaKNKzuA2Hh0UsEAy_8N_3d3OkLOOJtyzszFU6yX9nEqGDNTLQ7IiKnKSNDKqEMy4qUoSwnA5DGZ5BwaJipV6VKYE_K1xORj2tquRVrH7c6mkGNHo6diVsxCbhP2-yaHDukq2S7vdWo79094se-4wf6PMQS9x7dkNwP6j5heiyub0dG5HU7NhqG2D7E7JUfebjJOfjkmz_PrVX1bLB5u7urLRRG4kn2BcviNg_DGQQsMpbaN1E6ila1TTmiQ2rMKrNdeNd6BKxvQiN61HKBBGJPzn70BEde7FLY2fa4lKGaUgW83mGFr</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Tayyab, M.</creator><creator>Zafar, M.F.</creator><creator>Ali, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection</title><author>Tayyab, M. ; Zafar, M.F. ; Ali, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e5009132f9d3c30e58ab58d5ea5cd7d28358f063af8f7bfd3d4b38eefdc133be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>2D-Discrete Cosine Transform</topic><topic>Back propagation Neural Network</topic><topic>Biological neural networks</topic><topic>Digital images</topic><topic>Discrete wavelet transforms</topic><topic>Face detection</topic><topic>Face localization</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Skin</topic><topic>Skin color segmentation</topic><topic>Testing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Tayyab, M.</creatorcontrib><creatorcontrib>Zafar, M.F.</creatorcontrib><creatorcontrib>Ali, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tayyab, M.</au><au>Zafar, M.F.</au><au>Ali, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection</atitle><btitle>2009 International Conference of Soft Computing and Pattern Recognition</btitle><stitle>SOCPAR</stitle><date>2009-12</date><risdate>2009</risdate><spage>387</spage><epage>392</epage><pages>387-392</pages><isbn>1424453305</isbn><isbn>9781424453306</isbn><eisbn>0769538797</eisbn><eisbn>9780769538792</eisbn><abstract>Human brain can detect faces from the images constructed in their eyes. The face detection is a computerize method of locating the face in the digital image. It is an important challenge to locate faces from uncontrolled and indistinguishable background of the digital image. This paper presents human face detection from the colored images. Skin color segmentation is used for localizations of skin colored components in the digital image. The features are extracted by using 2D-Discrete Cosine Transform (DCT2) and 2D-Discrete Wavelet Transform (DWT2). The Back Propagation neural Network (BPN) is used for training and testing purposes. In this research, three sets of images: 50, 100 and 180 have been used for experimentation. About 60 % of the images were used in training phase and rests were used for testing purpose. This paper presents the performance comparison of DCT2 and DWT2 used for feature extraction. The best detection rate of 84.03 % with the false positive rate of 5.05% was obtained using DCT2 as compare to DWT2 which provided detection rate of 83.61 % with the false positive rate of 8.43%.</abstract><pub>IEEE</pub><doi>10.1109/SoCPaR.2009.82</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424453305
ispartof 2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.387-392
issn
language eng
recordid cdi_ieee_primary_5370979
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 2D-Discrete Cosine Transform
Back propagation Neural Network
Biological neural networks
Digital images
Discrete wavelet transforms
Face detection
Face localization
Feature extraction
Humans
Neural networks
Skin
Skin color segmentation
Testing
Wavelet transforms
title Performance Comparison of 2D-Discrete Cosine Transform and 2D-Discrete Wavelet Transform for Neural Network-Based Face Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20Comparison%20of%202D-Discrete%20Cosine%20Transform%20and%202D-Discrete%20Wavelet%20Transform%20for%20Neural%20Network-Based%20Face%20Detection&rft.btitle=2009%20International%20Conference%20of%20Soft%20Computing%20and%20Pattern%20Recognition&rft.au=Tayyab,%20M.&rft.date=2009-12&rft.spage=387&rft.epage=392&rft.pages=387-392&rft.isbn=1424453305&rft.isbn_list=9781424453306&rft_id=info:doi/10.1109/SoCPaR.2009.82&rft_dat=%3Cieee_6IE%3E5370979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538797&rft.eisbn_list=9780769538792&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5370979&rfr_iscdi=true