Using Incremental Fuzzy Clustering to Web Usage Mining
The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | |
container_start_page | 653 |
container_title | |
container_volume | |
creator | Aghabozorgi, S.R. Wah, T.Y. |
description | The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion. |
doi_str_mv | 10.1109/SoCPaR.2009.128 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5370353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5370353</ieee_id><sourcerecordid>5370353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-46dd0fd81fe8ecc376d82de419f5d8276ebba2798d9f5623bc480eeb956ed0863</originalsourceid><addsrcrecordid>eNotj01Lw0AURUdE0NauXbiZP5D45ntmKcHaQkVRg8syk3kpA2kqmXTR_nojurqXc-DCJeSOQckYuIePQ_Xm30sO4ErG7QWZgdFOCWucuSQzJrmUSghQ12SRcwrAtdFWcndDdJ1Tv6Prvhlwj_3oO7o8ns8nWnXHPOLwK8cD_cJA6-x3SF9SP7FbctX6LuPiP-ekXj59Vqti8_q8rh43RWJGjYXUMUIbLWvRYtMIo6PlESVzrZqa0RiC58bZOAHNRWikBcTglMYIVos5uf_bTYi4_R7S3g-nrRIGxHToB_4KRps</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aghabozorgi, S.R. ; Wah, T.Y.</creator><creatorcontrib>Aghabozorgi, S.R. ; Wah, T.Y.</creatorcontrib><description>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</description><identifier>ISBN: 1424453305</identifier><identifier>ISBN: 9781424453306</identifier><identifier>EISBN: 0769538797</identifier><identifier>EISBN: 9780769538792</identifier><identifier>DOI: 10.1109/SoCPaR.2009.128</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Computer applications ; Computer industry ; Constraint optimization ; Containers ; Design optimization ; fuzzy c-mean ; Integer linear programming ; Laboratories ; Pattern recognition ; Printing ; Testing ; web log ; web usage mining</subject><ispartof>2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.653-658</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5370353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5370353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aghabozorgi, S.R.</creatorcontrib><creatorcontrib>Wah, T.Y.</creatorcontrib><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><title>2009 International Conference of Soft Computing and Pattern Recognition</title><addtitle>SOCPAR</addtitle><description>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</description><subject>clustering</subject><subject>Computer applications</subject><subject>Computer industry</subject><subject>Constraint optimization</subject><subject>Containers</subject><subject>Design optimization</subject><subject>fuzzy c-mean</subject><subject>Integer linear programming</subject><subject>Laboratories</subject><subject>Pattern recognition</subject><subject>Printing</subject><subject>Testing</subject><subject>web log</subject><subject>web usage mining</subject><isbn>1424453305</isbn><isbn>9781424453306</isbn><isbn>0769538797</isbn><isbn>9780769538792</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AURUdE0NauXbiZP5D45ntmKcHaQkVRg8syk3kpA2kqmXTR_nojurqXc-DCJeSOQckYuIePQ_Xm30sO4ErG7QWZgdFOCWucuSQzJrmUSghQ12SRcwrAtdFWcndDdJ1Tv6Prvhlwj_3oO7o8ns8nWnXHPOLwK8cD_cJA6-x3SF9SP7FbctX6LuPiP-ekXj59Vqti8_q8rh43RWJGjYXUMUIbLWvRYtMIo6PlESVzrZqa0RiC58bZOAHNRWikBcTglMYIVos5uf_bTYi4_R7S3g-nrRIGxHToB_4KRps</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Aghabozorgi, S.R.</creator><creator>Wah, T.Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><author>Aghabozorgi, S.R. ; Wah, T.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-46dd0fd81fe8ecc376d82de419f5d8276ebba2798d9f5623bc480eeb956ed0863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>clustering</topic><topic>Computer applications</topic><topic>Computer industry</topic><topic>Constraint optimization</topic><topic>Containers</topic><topic>Design optimization</topic><topic>fuzzy c-mean</topic><topic>Integer linear programming</topic><topic>Laboratories</topic><topic>Pattern recognition</topic><topic>Printing</topic><topic>Testing</topic><topic>web log</topic><topic>web usage mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Aghabozorgi, S.R.</creatorcontrib><creatorcontrib>Wah, T.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aghabozorgi, S.R.</au><au>Wah, T.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Incremental Fuzzy Clustering to Web Usage Mining</atitle><btitle>2009 International Conference of Soft Computing and Pattern Recognition</btitle><stitle>SOCPAR</stitle><date>2009-12</date><risdate>2009</risdate><spage>653</spage><epage>658</epage><pages>653-658</pages><isbn>1424453305</isbn><isbn>9781424453306</isbn><eisbn>0769538797</eisbn><eisbn>9780769538792</eisbn><abstract>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</abstract><pub>IEEE</pub><doi>10.1109/SoCPaR.2009.128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424453305 |
ispartof | 2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.653-658 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5370353 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | clustering Computer applications Computer industry Constraint optimization Containers Design optimization fuzzy c-mean Integer linear programming Laboratories Pattern recognition Printing Testing web log web usage mining |
title | Using Incremental Fuzzy Clustering to Web Usage Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Incremental%20Fuzzy%20Clustering%20to%20Web%20Usage%20Mining&rft.btitle=2009%20International%20Conference%20of%20Soft%20Computing%20and%20Pattern%20Recognition&rft.au=Aghabozorgi,%20S.R.&rft.date=2009-12&rft.spage=653&rft.epage=658&rft.pages=653-658&rft.isbn=1424453305&rft.isbn_list=9781424453306&rft_id=info:doi/10.1109/SoCPaR.2009.128&rft_dat=%3Cieee_6IE%3E5370353%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538797&rft.eisbn_list=9780769538792&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5370353&rfr_iscdi=true |