Using Incremental Fuzzy Clustering to Web Usage Mining

The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aghabozorgi, S.R., Wah, T.Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue
container_start_page 653
container_title
container_volume
creator Aghabozorgi, S.R.
Wah, T.Y.
description The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.
doi_str_mv 10.1109/SoCPaR.2009.128
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5370353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5370353</ieee_id><sourcerecordid>5370353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-46dd0fd81fe8ecc376d82de419f5d8276ebba2798d9f5623bc480eeb956ed0863</originalsourceid><addsrcrecordid>eNotj01Lw0AURUdE0NauXbiZP5D45ntmKcHaQkVRg8syk3kpA2kqmXTR_nojurqXc-DCJeSOQckYuIePQ_Xm30sO4ErG7QWZgdFOCWucuSQzJrmUSghQ12SRcwrAtdFWcndDdJ1Tv6Prvhlwj_3oO7o8ns8nWnXHPOLwK8cD_cJA6-x3SF9SP7FbctX6LuPiP-ekXj59Vqti8_q8rh43RWJGjYXUMUIbLWvRYtMIo6PlESVzrZqa0RiC58bZOAHNRWikBcTglMYIVos5uf_bTYi4_R7S3g-nrRIGxHToB_4KRps</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aghabozorgi, S.R. ; Wah, T.Y.</creator><creatorcontrib>Aghabozorgi, S.R. ; Wah, T.Y.</creatorcontrib><description>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</description><identifier>ISBN: 1424453305</identifier><identifier>ISBN: 9781424453306</identifier><identifier>EISBN: 0769538797</identifier><identifier>EISBN: 9780769538792</identifier><identifier>DOI: 10.1109/SoCPaR.2009.128</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Computer applications ; Computer industry ; Constraint optimization ; Containers ; Design optimization ; fuzzy c-mean ; Integer linear programming ; Laboratories ; Pattern recognition ; Printing ; Testing ; web log ; web usage mining</subject><ispartof>2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.653-658</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5370353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5370353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aghabozorgi, S.R.</creatorcontrib><creatorcontrib>Wah, T.Y.</creatorcontrib><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><title>2009 International Conference of Soft Computing and Pattern Recognition</title><addtitle>SOCPAR</addtitle><description>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</description><subject>clustering</subject><subject>Computer applications</subject><subject>Computer industry</subject><subject>Constraint optimization</subject><subject>Containers</subject><subject>Design optimization</subject><subject>fuzzy c-mean</subject><subject>Integer linear programming</subject><subject>Laboratories</subject><subject>Pattern recognition</subject><subject>Printing</subject><subject>Testing</subject><subject>web log</subject><subject>web usage mining</subject><isbn>1424453305</isbn><isbn>9781424453306</isbn><isbn>0769538797</isbn><isbn>9780769538792</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AURUdE0NauXbiZP5D45ntmKcHaQkVRg8syk3kpA2kqmXTR_nojurqXc-DCJeSOQckYuIePQ_Xm30sO4ErG7QWZgdFOCWucuSQzJrmUSghQ12SRcwrAtdFWcndDdJ1Tv6Prvhlwj_3oO7o8ns8nWnXHPOLwK8cD_cJA6-x3SF9SP7FbctX6LuPiP-ekXj59Vqti8_q8rh43RWJGjYXUMUIbLWvRYtMIo6PlESVzrZqa0RiC58bZOAHNRWikBcTglMYIVos5uf_bTYi4_R7S3g-nrRIGxHToB_4KRps</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Aghabozorgi, S.R.</creator><creator>Wah, T.Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Using Incremental Fuzzy Clustering to Web Usage Mining</title><author>Aghabozorgi, S.R. ; Wah, T.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-46dd0fd81fe8ecc376d82de419f5d8276ebba2798d9f5623bc480eeb956ed0863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>clustering</topic><topic>Computer applications</topic><topic>Computer industry</topic><topic>Constraint optimization</topic><topic>Containers</topic><topic>Design optimization</topic><topic>fuzzy c-mean</topic><topic>Integer linear programming</topic><topic>Laboratories</topic><topic>Pattern recognition</topic><topic>Printing</topic><topic>Testing</topic><topic>web log</topic><topic>web usage mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Aghabozorgi, S.R.</creatorcontrib><creatorcontrib>Wah, T.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aghabozorgi, S.R.</au><au>Wah, T.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Incremental Fuzzy Clustering to Web Usage Mining</atitle><btitle>2009 International Conference of Soft Computing and Pattern Recognition</btitle><stitle>SOCPAR</stitle><date>2009-12</date><risdate>2009</risdate><spage>653</spage><epage>658</epage><pages>653-658</pages><isbn>1424453305</isbn><isbn>9781424453306</isbn><eisbn>0769538797</eisbn><eisbn>9780769538792</eisbn><abstract>The recent extensive growth of data on the Web, has generated an enormous amount of log records on Web server databases. Applying Web usage mining techniques on these vast amounts of historical data can discover potentially useful patterns and reveal user access behaviors on the Web site. Cluster analysis has widely been applied to generate user behavior models on server Web logs. Most of these off-line models have the problem of the decrease of accuracy over time resulted of new users joining or changes of behavior for existing users in model-based approaches. This paper proposes a novel approach to generate dynamic model from off-line model created by fuzzy clustering. In this method, we will use users' transactions periodically to change the off-line model. To this aim, an improved model of leader clustering along with a static approach is used to regenerate clusters in an incremental fashion.</abstract><pub>IEEE</pub><doi>10.1109/SoCPaR.2009.128</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424453305
ispartof 2009 International Conference of Soft Computing and Pattern Recognition, 2009, p.653-658
issn
language eng
recordid cdi_ieee_primary_5370353
source IEEE Electronic Library (IEL) Conference Proceedings
subjects clustering
Computer applications
Computer industry
Constraint optimization
Containers
Design optimization
fuzzy c-mean
Integer linear programming
Laboratories
Pattern recognition
Printing
Testing
web log
web usage mining
title Using Incremental Fuzzy Clustering to Web Usage Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Incremental%20Fuzzy%20Clustering%20to%20Web%20Usage%20Mining&rft.btitle=2009%20International%20Conference%20of%20Soft%20Computing%20and%20Pattern%20Recognition&rft.au=Aghabozorgi,%20S.R.&rft.date=2009-12&rft.spage=653&rft.epage=658&rft.pages=653-658&rft.isbn=1424453305&rft.isbn_list=9781424453306&rft_id=info:doi/10.1109/SoCPaR.2009.128&rft_dat=%3Cieee_6IE%3E5370353%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769538797&rft.eisbn_list=9780769538792&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5370353&rfr_iscdi=true