Extreme Binning: Scalable, parallel deduplication for chunk-based file backup
Data deduplication is an essential and critical component of backup systems. Essential, because it reduces storage space requirements, and critical, because the performance of the entire backup operation depends on its throughput. Traditional backup workloads consist of large data streams with high...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Bhagwat, D. Eshghi, K. Long, D.D.E. Lillibridge, M. |
description | Data deduplication is an essential and critical component of backup systems. Essential, because it reduces storage space requirements, and critical, because the performance of the entire backup operation depends on its throughput. Traditional backup workloads consist of large data streams with high locality, which existing deduplication techniques require to provide reasonable throughput. We present Extreme Binning, a scalable deduplication technique for non-traditional backup workloads that are made up of individual files with no locality among consecutive files in a given window of time. Due to lack of locality, existing techniques perform poorly on these workloads. Extreme Binning exploits file similarity instead of locality, and makes only one disk access for chunk lookup per file, which gives reasonable throughput. Multi-node backup systems built with Extreme Binning scale gracefully with the amount of input data; more backup nodes can be added to boost throughput. Each file is allocated using a stateless routing algorithm to only one node, allowing for maximum parallelization, and each backup node is autonomous with no dependency across nodes, making data management tasks robust with low overhead. |
doi_str_mv | 10.1109/MASCOT.2009.5366623 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5366623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5366623</ieee_id><sourcerecordid>5366623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1853-3383bff7016ab110a16a700b5886ed9760bef9307fd204463c25cbca599d094b3</originalsourceid><addsrcrecordid>eNo1kMtOAjEYRustcUCegE0fwBn_3lt3SPCSQFiAa9J2Wq2UYTIDib69JOLqLL7kJN9BaEygIgTMw2Kymi7XFQUwlWBSSsou0MgoTTjlnBuq5SUqKFOiBErVFRr8D0pfo4IIKkslmLlFg77_AqBABCvQYvZ96MIu4KfUNKn5eMQrb7N1Odzj1nY255BxHepjm5O3h7RvcNx32H8em23pbB9qHFMO2Fm_PbZ36Cba3IfRmUP0_jxbT1_L-fLlbTqZl55owUrGNHMxKiDSutM7e6ICcEJrGWqjJLgQDQMVawqcS-ap8M5bYUwNhjs2ROM_bwohbNou7Wz3szlnYb9RIVHS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extreme Binning: Scalable, parallel deduplication for chunk-based file backup</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhagwat, D. ; Eshghi, K. ; Long, D.D.E. ; Lillibridge, M.</creator><creatorcontrib>Bhagwat, D. ; Eshghi, K. ; Long, D.D.E. ; Lillibridge, M.</creatorcontrib><description>Data deduplication is an essential and critical component of backup systems. Essential, because it reduces storage space requirements, and critical, because the performance of the entire backup operation depends on its throughput. Traditional backup workloads consist of large data streams with high locality, which existing deduplication techniques require to provide reasonable throughput. We present Extreme Binning, a scalable deduplication technique for non-traditional backup workloads that are made up of individual files with no locality among consecutive files in a given window of time. Due to lack of locality, existing techniques perform poorly on these workloads. Extreme Binning exploits file similarity instead of locality, and makes only one disk access for chunk lookup per file, which gives reasonable throughput. Multi-node backup systems built with Extreme Binning scale gracefully with the amount of input data; more backup nodes can be added to boost throughput. Each file is allocated using a stateless routing algorithm to only one node, allowing for maximum parallelization, and each backup node is autonomous with no dependency across nodes, making data management tasks robust with low overhead.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 1424449278</identifier><identifier>ISBN: 9781424449279</identifier><identifier>EISSN: 2375-0227</identifier><identifier>EISBN: 9781424449286</identifier><identifier>EISBN: 1424449286</identifier><identifier>DOI: 10.1109/MASCOT.2009.5366623</identifier><language>eng</language><publisher>IEEE</publisher><subject>Digital images ; Electronic mail ; Intrusion detection ; Laboratories ; Milling machines ; Robustness ; Routing ; Space technology ; Throughput ; Web pages</subject><ispartof>2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 2009, p.1-9</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1853-3383bff7016ab110a16a700b5886ed9760bef9307fd204463c25cbca599d094b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5366623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5366623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhagwat, D.</creatorcontrib><creatorcontrib>Eshghi, K.</creatorcontrib><creatorcontrib>Long, D.D.E.</creatorcontrib><creatorcontrib>Lillibridge, M.</creatorcontrib><title>Extreme Binning: Scalable, parallel deduplication for chunk-based file backup</title><title>2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems</title><addtitle>MASCOT</addtitle><description>Data deduplication is an essential and critical component of backup systems. Essential, because it reduces storage space requirements, and critical, because the performance of the entire backup operation depends on its throughput. Traditional backup workloads consist of large data streams with high locality, which existing deduplication techniques require to provide reasonable throughput. We present Extreme Binning, a scalable deduplication technique for non-traditional backup workloads that are made up of individual files with no locality among consecutive files in a given window of time. Due to lack of locality, existing techniques perform poorly on these workloads. Extreme Binning exploits file similarity instead of locality, and makes only one disk access for chunk lookup per file, which gives reasonable throughput. Multi-node backup systems built with Extreme Binning scale gracefully with the amount of input data; more backup nodes can be added to boost throughput. Each file is allocated using a stateless routing algorithm to only one node, allowing for maximum parallelization, and each backup node is autonomous with no dependency across nodes, making data management tasks robust with low overhead.</description><subject>Digital images</subject><subject>Electronic mail</subject><subject>Intrusion detection</subject><subject>Laboratories</subject><subject>Milling machines</subject><subject>Robustness</subject><subject>Routing</subject><subject>Space technology</subject><subject>Throughput</subject><subject>Web pages</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>1424449278</isbn><isbn>9781424449279</isbn><isbn>9781424449286</isbn><isbn>1424449286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOAjEYRustcUCegE0fwBn_3lt3SPCSQFiAa9J2Wq2UYTIDib69JOLqLL7kJN9BaEygIgTMw2Kymi7XFQUwlWBSSsou0MgoTTjlnBuq5SUqKFOiBErVFRr8D0pfo4IIKkslmLlFg77_AqBABCvQYvZ96MIu4KfUNKn5eMQrb7N1Odzj1nY255BxHepjm5O3h7RvcNx32H8em23pbB9qHFMO2Fm_PbZ36Cba3IfRmUP0_jxbT1_L-fLlbTqZl55owUrGNHMxKiDSutM7e6ICcEJrGWqjJLgQDQMVawqcS-ap8M5bYUwNhjs2ROM_bwohbNou7Wz3szlnYb9RIVHS</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Bhagwat, D.</creator><creator>Eshghi, K.</creator><creator>Long, D.D.E.</creator><creator>Lillibridge, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Extreme Binning: Scalable, parallel deduplication for chunk-based file backup</title><author>Bhagwat, D. ; Eshghi, K. ; Long, D.D.E. ; Lillibridge, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1853-3383bff7016ab110a16a700b5886ed9760bef9307fd204463c25cbca599d094b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Digital images</topic><topic>Electronic mail</topic><topic>Intrusion detection</topic><topic>Laboratories</topic><topic>Milling machines</topic><topic>Robustness</topic><topic>Routing</topic><topic>Space technology</topic><topic>Throughput</topic><topic>Web pages</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhagwat, D.</creatorcontrib><creatorcontrib>Eshghi, K.</creatorcontrib><creatorcontrib>Long, D.D.E.</creatorcontrib><creatorcontrib>Lillibridge, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhagwat, D.</au><au>Eshghi, K.</au><au>Long, D.D.E.</au><au>Lillibridge, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extreme Binning: Scalable, parallel deduplication for chunk-based file backup</atitle><btitle>2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems</btitle><stitle>MASCOT</stitle><date>2009-09</date><risdate>2009</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>1424449278</isbn><isbn>9781424449279</isbn><eisbn>9781424449286</eisbn><eisbn>1424449286</eisbn><abstract>Data deduplication is an essential and critical component of backup systems. Essential, because it reduces storage space requirements, and critical, because the performance of the entire backup operation depends on its throughput. Traditional backup workloads consist of large data streams with high locality, which existing deduplication techniques require to provide reasonable throughput. We present Extreme Binning, a scalable deduplication technique for non-traditional backup workloads that are made up of individual files with no locality among consecutive files in a given window of time. Due to lack of locality, existing techniques perform poorly on these workloads. Extreme Binning exploits file similarity instead of locality, and makes only one disk access for chunk lookup per file, which gives reasonable throughput. Multi-node backup systems built with Extreme Binning scale gracefully with the amount of input data; more backup nodes can be added to boost throughput. Each file is allocated using a stateless routing algorithm to only one node, allowing for maximum parallelization, and each backup node is autonomous with no dependency across nodes, making data management tasks robust with low overhead.</abstract><pub>IEEE</pub><doi>10.1109/MASCOT.2009.5366623</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1526-7539 |
ispartof | 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 2009, p.1-9 |
issn | 1526-7539 2375-0227 |
language | eng |
recordid | cdi_ieee_primary_5366623 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Digital images Electronic mail Intrusion detection Laboratories Milling machines Robustness Routing Space technology Throughput Web pages |
title | Extreme Binning: Scalable, parallel deduplication for chunk-based file backup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extreme%20Binning:%20Scalable,%20parallel%20deduplication%20for%20chunk-based%20file%20backup&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Modeling,%20Analysis%20&%20Simulation%20of%20Computer%20and%20Telecommunication%20Systems&rft.au=Bhagwat,%20D.&rft.date=2009-09&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=1424449278&rft.isbn_list=9781424449279&rft_id=info:doi/10.1109/MASCOT.2009.5366623&rft_dat=%3Cieee_6IE%3E5366623%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424449286&rft.eisbn_list=1424449286&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5366623&rfr_iscdi=true |