The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods

Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Youxin Luo, Zheming He, Xiaoyi Che, Bin Zeng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue
container_start_page 509
container_title
container_volume 5
creator Youxin Luo
Zheming He
Xiaoyi Che
Bin Zeng
description Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.
doi_str_mv 10.1109/ICNC.2009.161
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5365406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5365406</ieee_id><sourcerecordid>5365406</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-348137a9e8c32d5a4bd81cb88d17a2180a2acf95259767d487daf01190e1e0343</originalsourceid><addsrcrecordid>eNo1jMFOwzAQRC1BJdrSIycu_oGE3TiO7SNEFCoVKkGuqNraGyWoSVCcS_-eIuA0T5o3I8QNQooI7m5TvpZpBuBSLPBCLMAUTiujCnMp5hlqkzit9UwsfhwHyjh1JVYxfgKAQmMMuLn4qBqWbxyZRt_IoZYv7Bvq29jJ91M_NRzbKB8ocpBD_196Osr1SH5qh_6MuzHwKMuGhngexYm7szg1Q4jXYlbTMfLqL5eiWj9W5XOy3T1tyvtt0jqYEpVbVIYcW6-yoCk_BIv-YG1AQxlaoIx87XSmnSlMyK0JVAOiA0YGlauluP29bZl5_zW2HY2nvVaFzqFQ39XMU_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</creator><creatorcontrib>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</creatorcontrib><description>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 0769537367</identifier><identifier>ISBN: 9780769537368</identifier><identifier>DOI: 10.1109/ICNC.2009.161</identifier><identifier>LCCN: 2009903793</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; chaotic sequences ; Couplings ; fractional order chaos system ; Helium ; Iterative methods ; Kinematics ; Mechanical engineering ; mechanism synthesis ; Multidimensional systems ; Newton iterative method ; Nonlinear equations ; Transfer functions</subject><ispartof>2009 Fifth International Conference on Natural Computation, 2009, Vol.5, p.509-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5365406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5365406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youxin Luo</creatorcontrib><creatorcontrib>Zheming He</creatorcontrib><creatorcontrib>Xiaoyi Che</creatorcontrib><creatorcontrib>Bin Zeng</creatorcontrib><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><title>2009 Fifth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</description><subject>Chaos</subject><subject>chaotic sequences</subject><subject>Couplings</subject><subject>fractional order chaos system</subject><subject>Helium</subject><subject>Iterative methods</subject><subject>Kinematics</subject><subject>Mechanical engineering</subject><subject>mechanism synthesis</subject><subject>Multidimensional systems</subject><subject>Newton iterative method</subject><subject>Nonlinear equations</subject><subject>Transfer functions</subject><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMFOwzAQRC1BJdrSIycu_oGE3TiO7SNEFCoVKkGuqNraGyWoSVCcS_-eIuA0T5o3I8QNQooI7m5TvpZpBuBSLPBCLMAUTiujCnMp5hlqkzit9UwsfhwHyjh1JVYxfgKAQmMMuLn4qBqWbxyZRt_IoZYv7Bvq29jJ91M_NRzbKB8ocpBD_196Osr1SH5qh_6MuzHwKMuGhngexYm7szg1Q4jXYlbTMfLqL5eiWj9W5XOy3T1tyvtt0jqYEpVbVIYcW6-yoCk_BIv-YG1AQxlaoIx87XSmnSlMyK0JVAOiA0YGlauluP29bZl5_zW2HY2nvVaFzqFQ39XMU_I</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Youxin Luo</creator><creator>Zheming He</creator><creator>Xiaoyi Che</creator><creator>Bin Zeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><author>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-348137a9e8c32d5a4bd81cb88d17a2180a2acf95259767d487daf01190e1e0343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chaos</topic><topic>chaotic sequences</topic><topic>Couplings</topic><topic>fractional order chaos system</topic><topic>Helium</topic><topic>Iterative methods</topic><topic>Kinematics</topic><topic>Mechanical engineering</topic><topic>mechanism synthesis</topic><topic>Multidimensional systems</topic><topic>Newton iterative method</topic><topic>Nonlinear equations</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Youxin Luo</creatorcontrib><creatorcontrib>Zheming He</creatorcontrib><creatorcontrib>Xiaoyi Che</creatorcontrib><creatorcontrib>Bin Zeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youxin Luo</au><au>Zheming He</au><au>Xiaoyi Che</au><au>Bin Zeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</atitle><btitle>2009 Fifth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2009-08</date><risdate>2009</risdate><volume>5</volume><spage>509</spage><epage>512</epage><pages>509-512</pages><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><abstract>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2009.161</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2009 Fifth International Conference on Natural Computation, 2009, Vol.5, p.509-512
issn 2157-9555
language eng
recordid cdi_ieee_primary_5365406
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaos
chaotic sequences
Couplings
fractional order chaos system
Helium
Iterative methods
Kinematics
Mechanical engineering
mechanism synthesis
Multidimensional systems
Newton iterative method
Nonlinear equations
Transfer functions
title The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Research%20of%20Mechanism%20Synthesis%20Based%20on%20Mechanical%20Fractional%20Order%20Chaos%20System%20Methods&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Natural%20Computation&rft.au=Youxin%20Luo&rft.date=2009-08&rft.volume=5&rft.spage=509&rft.epage=512&rft.pages=509-512&rft.issn=2157-9555&rft.isbn=0769537367&rft.isbn_list=9780769537368&rft_id=info:doi/10.1109/ICNC.2009.161&rft_dat=%3Cieee_6IE%3E5365406%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5365406&rfr_iscdi=true