The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods
Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512 |
---|---|
container_issue | |
container_start_page | 509 |
container_title | |
container_volume | 5 |
creator | Youxin Luo Zheming He Xiaoyi Che Bin Zeng |
description | Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design. |
doi_str_mv | 10.1109/ICNC.2009.161 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5365406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5365406</ieee_id><sourcerecordid>5365406</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-348137a9e8c32d5a4bd81cb88d17a2180a2acf95259767d487daf01190e1e0343</originalsourceid><addsrcrecordid>eNo1jMFOwzAQRC1BJdrSIycu_oGE3TiO7SNEFCoVKkGuqNraGyWoSVCcS_-eIuA0T5o3I8QNQooI7m5TvpZpBuBSLPBCLMAUTiujCnMp5hlqkzit9UwsfhwHyjh1JVYxfgKAQmMMuLn4qBqWbxyZRt_IoZYv7Bvq29jJ91M_NRzbKB8ocpBD_196Osr1SH5qh_6MuzHwKMuGhngexYm7szg1Q4jXYlbTMfLqL5eiWj9W5XOy3T1tyvtt0jqYEpVbVIYcW6-yoCk_BIv-YG1AQxlaoIx87XSmnSlMyK0JVAOiA0YGlauluP29bZl5_zW2HY2nvVaFzqFQ39XMU_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</creator><creatorcontrib>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</creatorcontrib><description>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 0769537367</identifier><identifier>ISBN: 9780769537368</identifier><identifier>DOI: 10.1109/ICNC.2009.161</identifier><identifier>LCCN: 2009903793</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; chaotic sequences ; Couplings ; fractional order chaos system ; Helium ; Iterative methods ; Kinematics ; Mechanical engineering ; mechanism synthesis ; Multidimensional systems ; Newton iterative method ; Nonlinear equations ; Transfer functions</subject><ispartof>2009 Fifth International Conference on Natural Computation, 2009, Vol.5, p.509-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5365406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5365406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youxin Luo</creatorcontrib><creatorcontrib>Zheming He</creatorcontrib><creatorcontrib>Xiaoyi Che</creatorcontrib><creatorcontrib>Bin Zeng</creatorcontrib><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><title>2009 Fifth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</description><subject>Chaos</subject><subject>chaotic sequences</subject><subject>Couplings</subject><subject>fractional order chaos system</subject><subject>Helium</subject><subject>Iterative methods</subject><subject>Kinematics</subject><subject>Mechanical engineering</subject><subject>mechanism synthesis</subject><subject>Multidimensional systems</subject><subject>Newton iterative method</subject><subject>Nonlinear equations</subject><subject>Transfer functions</subject><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMFOwzAQRC1BJdrSIycu_oGE3TiO7SNEFCoVKkGuqNraGyWoSVCcS_-eIuA0T5o3I8QNQooI7m5TvpZpBuBSLPBCLMAUTiujCnMp5hlqkzit9UwsfhwHyjh1JVYxfgKAQmMMuLn4qBqWbxyZRt_IoZYv7Bvq29jJ91M_NRzbKB8ocpBD_196Osr1SH5qh_6MuzHwKMuGhngexYm7szg1Q4jXYlbTMfLqL5eiWj9W5XOy3T1tyvtt0jqYEpVbVIYcW6-yoCk_BIv-YG1AQxlaoIx87XSmnSlMyK0JVAOiA0YGlauluP29bZl5_zW2HY2nvVaFzqFQ39XMU_I</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Youxin Luo</creator><creator>Zheming He</creator><creator>Xiaoyi Che</creator><creator>Bin Zeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</title><author>Youxin Luo ; Zheming He ; Xiaoyi Che ; Bin Zeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-348137a9e8c32d5a4bd81cb88d17a2180a2acf95259767d487daf01190e1e0343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chaos</topic><topic>chaotic sequences</topic><topic>Couplings</topic><topic>fractional order chaos system</topic><topic>Helium</topic><topic>Iterative methods</topic><topic>Kinematics</topic><topic>Mechanical engineering</topic><topic>mechanism synthesis</topic><topic>Multidimensional systems</topic><topic>Newton iterative method</topic><topic>Nonlinear equations</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Youxin Luo</creatorcontrib><creatorcontrib>Zheming He</creatorcontrib><creatorcontrib>Xiaoyi Che</creatorcontrib><creatorcontrib>Bin Zeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youxin Luo</au><au>Zheming He</au><au>Xiaoyi Che</au><au>Bin Zeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods</atitle><btitle>2009 Fifth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2009-08</date><risdate>2009</risdate><volume>5</volume><spage>509</spage><epage>512</epage><pages>509-512</pages><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><abstract>Many questions in natural science and engineering are transformed into solving nonlinear equations. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess points. For the first time, the fractional order mechanical chaos methods of mechanism synthesis and all solutions of the nonlinear questions of mechanism synthesis were found by utilizing chaotic sequences of chaotic motions of mechanical fractional order system to obtain local initial points. As an example the problem of function generation for planar four-linkage guide mechanism was considered. This makes multi-projects selecting be possible. This method is adaptive to planar multi-linkage and spatial mechanism. This provides a new simple realization method for mechanics design.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2009.161</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2009 Fifth International Conference on Natural Computation, 2009, Vol.5, p.509-512 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_5365406 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chaos chaotic sequences Couplings fractional order chaos system Helium Iterative methods Kinematics Mechanical engineering mechanism synthesis Multidimensional systems Newton iterative method Nonlinear equations Transfer functions |
title | The Research of Mechanism Synthesis Based on Mechanical Fractional Order Chaos System Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Research%20of%20Mechanism%20Synthesis%20Based%20on%20Mechanical%20Fractional%20Order%20Chaos%20System%20Methods&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Natural%20Computation&rft.au=Youxin%20Luo&rft.date=2009-08&rft.volume=5&rft.spage=509&rft.epage=512&rft.pages=509-512&rft.issn=2157-9555&rft.isbn=0769537367&rft.isbn_list=9780769537368&rft_id=info:doi/10.1109/ICNC.2009.161&rft_dat=%3Cieee_6IE%3E5365406%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5365406&rfr_iscdi=true |