Context-Based Adaptive Filtering of Interest Points in Image Retrieval
Interest points have been used as local features with success in many computer vision applications such as image/video retrieval and object recognition. However, a major issue when using this approach is a large number of interest points detected from each image and created a dense feature space. Th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interest points have been used as local features with success in many computer vision applications such as image/video retrieval and object recognition. However, a major issue when using this approach is a large number of interest points detected from each image and created a dense feature space. This influences the processing speed in any runtime application. Selecting the most important features to reduce the size of the feature space will solve this problem. Thereby this raises a question of what makes a feature more important than the others? In this paper, we present a new technique to choose a subset of features. Our approach differs from others in a fact that selected feature is based on the context of the given image. Our experimental results show a significant reduction rate of features while preserving the retrieval performance. |
---|---|
ISSN: | 2164-7143 2164-7151 |
DOI: | 10.1109/ISDA.2009.25 |