Toward Easy Parallel SAT Solving

In spite of its computational complexity, the satisfiability problem is a great and competitive approach to solve a wide range of problems. This leads to have a strong demand for high-performance sat-solving tools in industry. Over the years, many different approaches and optimizations have been dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dequen, G., Vander-Swalmen, P., Krajecki, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue
container_start_page 425
container_title
container_volume
creator Dequen, G.
Vander-Swalmen, P.
Krajecki, M.
description In spite of its computational complexity, the satisfiability problem is a great and competitive approach to solve a wide range of problems. This leads to have a strong demand for high-performance sat-solving tools in industry. Over the years, many different approaches and optimizations have been developed to tackle the problem more efficiently while being unaware of the actual trend in processor development which is from single-core to multi-core CPUs. This paper presents a shared memory parallel solving framework which is able to statically exploit the existing sequential and parallel solvers or preprocessors. This new framework facilitates the future parallel sat solving implementation approaches. It also briefly describes the associated lemma exchange policy. Some examples and experimentations with and without lemma exchange strategies using march, kcnfs and minisat are presented. Finally it shows the relevance of the scheme providing super linear speedups on some satisfiable and unsatisfiable formulas.
doi_str_mv 10.1109/ICTAI.2009.63
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5363778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5363778</ieee_id><sourcerecordid>oai_HAL_hal_00846958v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-529960db96cb82dab7c4956892a0df77852eec71735c4cc1ae3720a56b545963</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhccXGGuWrtxk6yLx3nnfZQjVBgIKzT5MJlMbiEYSqfTfG6m4OnD4-A6HsTuEDBHosSzqvMw4AGVanLEbMJqUIA7inEVcGJUCkrlgMRmLkkupNBK_ZBGC5amQQNcsnue-BVRWoCYTsaQev93UJWs3H5NXN7lhCEOyzetkOw6H_uPtll3t3DCH-C9XrH5a18UmrV6eyyKv0j0H-koVJ9LQtaR9a3nnWuMlKW2JO-h2xljFQ_AGjVBeeo8uCMPBKd0qqUiLFXs4afduaD6n_t1Nx2Z0fbPJq-a3A7ByuWsPuLD3J7YPIfzDSmix7IgfKuRNxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Toward Easy Parallel SAT Solving</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dequen, G. ; Vander-Swalmen, P. ; Krajecki, M.</creator><creatorcontrib>Dequen, G. ; Vander-Swalmen, P. ; Krajecki, M.</creatorcontrib><description>In spite of its computational complexity, the satisfiability problem is a great and competitive approach to solve a wide range of problems. This leads to have a strong demand for high-performance sat-solving tools in industry. Over the years, many different approaches and optimizations have been developed to tackle the problem more efficiently while being unaware of the actual trend in processor development which is from single-core to multi-core CPUs. This paper presents a shared memory parallel solving framework which is able to statically exploit the existing sequential and parallel solvers or preprocessors. This new framework facilitates the future parallel sat solving implementation approaches. It also briefly describes the associated lemma exchange policy. Some examples and experimentations with and without lemma exchange strategies using march, kcnfs and minisat are presented. Finally it shows the relevance of the scheme providing super linear speedups on some satisfiable and unsatisfiable formulas.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 9781424456192</identifier><identifier>ISBN: 1424456193</identifier><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 0769539203</identifier><identifier>EISBN: 9780769539201</identifier><identifier>DOI: 10.1109/ICTAI.2009.63</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Blackbox ; Collaborative work ; Computational complexity ; Computer Science ; Cryptography ; Data preprocessing ; Distributed, Parallel, and Cluster Computing ; Logic design ; Memory architecture ; Multicore processing ; NP-complete problem ; Parallel Solving ; Satisfiability Problem ; Very large scale integration</subject><ispartof>2009 21st IEEE International Conference on Tools with Artificial Intelligence, 2009, p.425-432</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8419-1948 ; 0000-0001-7497-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5363778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,883,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5363778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00846958$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dequen, G.</creatorcontrib><creatorcontrib>Vander-Swalmen, P.</creatorcontrib><creatorcontrib>Krajecki, M.</creatorcontrib><title>Toward Easy Parallel SAT Solving</title><title>2009 21st IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>ICTAI</addtitle><description>In spite of its computational complexity, the satisfiability problem is a great and competitive approach to solve a wide range of problems. This leads to have a strong demand for high-performance sat-solving tools in industry. Over the years, many different approaches and optimizations have been developed to tackle the problem more efficiently while being unaware of the actual trend in processor development which is from single-core to multi-core CPUs. This paper presents a shared memory parallel solving framework which is able to statically exploit the existing sequential and parallel solvers or preprocessors. This new framework facilitates the future parallel sat solving implementation approaches. It also briefly describes the associated lemma exchange policy. Some examples and experimentations with and without lemma exchange strategies using march, kcnfs and minisat are presented. Finally it shows the relevance of the scheme providing super linear speedups on some satisfiable and unsatisfiable formulas.</description><subject>Artificial Intelligence</subject><subject>Blackbox</subject><subject>Collaborative work</subject><subject>Computational complexity</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Data preprocessing</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Logic design</subject><subject>Memory architecture</subject><subject>Multicore processing</subject><subject>NP-complete problem</subject><subject>Parallel Solving</subject><subject>Satisfiability Problem</subject><subject>Very large scale integration</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>9781424456192</isbn><isbn>1424456193</isbn><isbn>0769539203</isbn><isbn>9780769539201</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AUhccXGGuWrtxk6yLx3nnfZQjVBgIKzT5MJlMbiEYSqfTfG6m4OnD4-A6HsTuEDBHosSzqvMw4AGVanLEbMJqUIA7inEVcGJUCkrlgMRmLkkupNBK_ZBGC5amQQNcsnue-BVRWoCYTsaQev93UJWs3H5NXN7lhCEOyzetkOw6H_uPtll3t3DCH-C9XrH5a18UmrV6eyyKv0j0H-koVJ9LQtaR9a3nnWuMlKW2JO-h2xljFQ_AGjVBeeo8uCMPBKd0qqUiLFXs4afduaD6n_t1Nx2Z0fbPJq-a3A7ByuWsPuLD3J7YPIfzDSmix7IgfKuRNxw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Dequen, G.</creator><creator>Vander-Swalmen, P.</creator><creator>Krajecki, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8419-1948</orcidid><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></search><sort><creationdate>200911</creationdate><title>Toward Easy Parallel SAT Solving</title><author>Dequen, G. ; Vander-Swalmen, P. ; Krajecki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-529960db96cb82dab7c4956892a0df77852eec71735c4cc1ae3720a56b545963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Blackbox</topic><topic>Collaborative work</topic><topic>Computational complexity</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Data preprocessing</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Logic design</topic><topic>Memory architecture</topic><topic>Multicore processing</topic><topic>NP-complete problem</topic><topic>Parallel Solving</topic><topic>Satisfiability Problem</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Dequen, G.</creatorcontrib><creatorcontrib>Vander-Swalmen, P.</creatorcontrib><creatorcontrib>Krajecki, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dequen, G.</au><au>Vander-Swalmen, P.</au><au>Krajecki, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Toward Easy Parallel SAT Solving</atitle><btitle>2009 21st IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>ICTAI</stitle><date>2009-11</date><risdate>2009</risdate><spage>425</spage><epage>432</epage><pages>425-432</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>9781424456192</isbn><isbn>1424456193</isbn><eisbn>0769539203</eisbn><eisbn>9780769539201</eisbn><abstract>In spite of its computational complexity, the satisfiability problem is a great and competitive approach to solve a wide range of problems. This leads to have a strong demand for high-performance sat-solving tools in industry. Over the years, many different approaches and optimizations have been developed to tackle the problem more efficiently while being unaware of the actual trend in processor development which is from single-core to multi-core CPUs. This paper presents a shared memory parallel solving framework which is able to statically exploit the existing sequential and parallel solvers or preprocessors. This new framework facilitates the future parallel sat solving implementation approaches. It also briefly describes the associated lemma exchange policy. Some examples and experimentations with and without lemma exchange strategies using march, kcnfs and minisat are presented. Finally it shows the relevance of the scheme providing super linear speedups on some satisfiable and unsatisfiable formulas.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2009.63</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8419-1948</orcidid><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof 2009 21st IEEE International Conference on Tools with Artificial Intelligence, 2009, p.425-432
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_5363778
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Intelligence
Blackbox
Collaborative work
Computational complexity
Computer Science
Cryptography
Data preprocessing
Distributed, Parallel, and Cluster Computing
Logic design
Memory architecture
Multicore processing
NP-complete problem
Parallel Solving
Satisfiability Problem
Very large scale integration
title Toward Easy Parallel SAT Solving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Toward%20Easy%20Parallel%20SAT%20Solving&rft.btitle=2009%2021st%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Dequen,%20G.&rft.date=2009-11&rft.spage=425&rft.epage=432&rft.pages=425-432&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=9781424456192&rft.isbn_list=1424456193&rft_id=info:doi/10.1109/ICTAI.2009.63&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00846958v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769539203&rft.eisbn_list=9780769539201&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5363778&rfr_iscdi=true