Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods

Genetic algorithms (GAs) are intelligent computational tools which their simplicity, accuracy and adaptable topology cause them to be used in globally minimum or maximum finding problems. Developing the GAs to increase their speed in finding the global minimum or maximum of a cost function has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nia, M.B., Alipouri, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue
container_start_page 31
container_title
container_volume
creator Nia, M.B.
Alipouri, Y.
description Genetic algorithms (GAs) are intelligent computational tools which their simplicity, accuracy and adaptable topology cause them to be used in globally minimum or maximum finding problems. Developing the GAs to increase their speed in finding the global minimum or maximum of a cost function has been a big challenge until now and many variants of GA has been evolved to accomplish this goal. This paper presents two new sequential mutation method and circular gene method to increase the speed of the GA. These methods attain a better final answer accompanied by lesser use of cost function evaluations in comparison with the original GA and some other known complementary methods. In addition, it speeds up reaching the minimum or maximum point regarding the number of generations. A number of common test functions with known minimum values and points are tested and the results are compared with some other algorithms such as original GA, bacterial evolutionary algorithm, jumping gene and PSO. Simulation results show that the presented methods in this paper can reach the global minimum point through lesser generations and evaluations of the cost function in comparison with the traditional methods.
doi_str_mv 10.1109/ISDA.2009.140
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5362810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5362810</ieee_id><sourcerecordid>5362810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-b38bb7bf9b967a648693e361f7a30768a35dca30850438da746a9bb45706840b3</originalsourceid><addsrcrecordid>eNo9j0tPwkAcxNdXIiBHT172CxT3_TiSikgC8YBNvJHd9g-sKVtsFxO_vfUR5zKTzOSXDEK3lEwoJfZ-sX6YThghdkIFOUNDopWV3Gj2eo4GjCqRaSrpBRpSwYQQmkt1-V8Ifo3GXfdGegnJpWQD5NZHgCrEHS6OOO0BzyFCCiWe1rumDWl_wHkTP6DdQSwBF933dA3vJ4gpuBqvTsml0ETsYoXz0Jan2rU_ELyCtG-q7gZdbV3dwfjPR6h4nL3kT9nyeb7Ip8usZNSmzHPjvfZb663STgmjLAeu6FY73r80jsuq7KORRHBTOS2Us94LqYkygng-Qne_3AAAm2MbDq793EiumKGEfwFRB1er</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nia, M.B. ; Alipouri, Y.</creator><creatorcontrib>Nia, M.B. ; Alipouri, Y.</creatorcontrib><description>Genetic algorithms (GAs) are intelligent computational tools which their simplicity, accuracy and adaptable topology cause them to be used in globally minimum or maximum finding problems. Developing the GAs to increase their speed in finding the global minimum or maximum of a cost function has been a big challenge until now and many variants of GA has been evolved to accomplish this goal. This paper presents two new sequential mutation method and circular gene method to increase the speed of the GA. These methods attain a better final answer accompanied by lesser use of cost function evaluations in comparison with the original GA and some other known complementary methods. In addition, it speeds up reaching the minimum or maximum point regarding the number of generations. A number of common test functions with known minimum values and points are tested and the results are compared with some other algorithms such as original GA, bacterial evolutionary algorithm, jumping gene and PSO. Simulation results show that the presented methods in this paper can reach the global minimum point through lesser generations and evaluations of the cost function in comparison with the traditional methods.</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 1424447356</identifier><identifier>ISBN: 9781424447350</identifier><identifier>EISSN: 2164-7151</identifier><identifier>EISBN: 076953872X</identifier><identifier>EISBN: 9780769538723</identifier><identifier>DOI: 10.1109/ISDA.2009.140</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; circular gene method ; Cloning ; Computational intelligence ; Convergence ; Cost function ; DNA ; Evolutionary computation ; Genetic algorithm ; Genetic algorithms ; Genetic engineering ; Genetic mutations ; sequential mutation method ; speeding up the convergence</subject><ispartof>2009 Ninth International Conference on Intelligent Systems Design and Applications, 2009, p.31-36</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-b38bb7bf9b967a648693e361f7a30768a35dca30850438da746a9bb45706840b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5362810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5362810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nia, M.B.</creatorcontrib><creatorcontrib>Alipouri, Y.</creatorcontrib><title>Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods</title><title>2009 Ninth International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>Genetic algorithms (GAs) are intelligent computational tools which their simplicity, accuracy and adaptable topology cause them to be used in globally minimum or maximum finding problems. Developing the GAs to increase their speed in finding the global minimum or maximum of a cost function has been a big challenge until now and many variants of GA has been evolved to accomplish this goal. This paper presents two new sequential mutation method and circular gene method to increase the speed of the GA. These methods attain a better final answer accompanied by lesser use of cost function evaluations in comparison with the original GA and some other known complementary methods. In addition, it speeds up reaching the minimum or maximum point regarding the number of generations. A number of common test functions with known minimum values and points are tested and the results are compared with some other algorithms such as original GA, bacterial evolutionary algorithm, jumping gene and PSO. Simulation results show that the presented methods in this paper can reach the global minimum point through lesser generations and evaluations of the cost function in comparison with the traditional methods.</description><subject>Biological cells</subject><subject>circular gene method</subject><subject>Cloning</subject><subject>Computational intelligence</subject><subject>Convergence</subject><subject>Cost function</subject><subject>DNA</subject><subject>Evolutionary computation</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Genetic mutations</subject><subject>sequential mutation method</subject><subject>speeding up the convergence</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>1424447356</isbn><isbn>9781424447350</isbn><isbn>076953872X</isbn><isbn>9780769538723</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tPwkAcxNdXIiBHT172CxT3_TiSikgC8YBNvJHd9g-sKVtsFxO_vfUR5zKTzOSXDEK3lEwoJfZ-sX6YThghdkIFOUNDopWV3Gj2eo4GjCqRaSrpBRpSwYQQmkt1-V8Ifo3GXfdGegnJpWQD5NZHgCrEHS6OOO0BzyFCCiWe1rumDWl_wHkTP6DdQSwBF933dA3vJ4gpuBqvTsml0ETsYoXz0Jan2rU_ELyCtG-q7gZdbV3dwfjPR6h4nL3kT9nyeb7Ip8usZNSmzHPjvfZb663STgmjLAeu6FY73r80jsuq7KORRHBTOS2Us94LqYkygng-Qne_3AAAm2MbDq793EiumKGEfwFRB1er</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Nia, M.B.</creator><creator>Alipouri, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods</title><author>Nia, M.B. ; Alipouri, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-b38bb7bf9b967a648693e361f7a30768a35dca30850438da746a9bb45706840b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological cells</topic><topic>circular gene method</topic><topic>Cloning</topic><topic>Computational intelligence</topic><topic>Convergence</topic><topic>Cost function</topic><topic>DNA</topic><topic>Evolutionary computation</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Genetic mutations</topic><topic>sequential mutation method</topic><topic>speeding up the convergence</topic><toplevel>online_resources</toplevel><creatorcontrib>Nia, M.B.</creatorcontrib><creatorcontrib>Alipouri, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nia, M.B.</au><au>Alipouri, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods</atitle><btitle>2009 Ninth International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2009-11</date><risdate>2009</risdate><spage>31</spage><epage>36</epage><pages>31-36</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>1424447356</isbn><isbn>9781424447350</isbn><eisbn>076953872X</eisbn><eisbn>9780769538723</eisbn><abstract>Genetic algorithms (GAs) are intelligent computational tools which their simplicity, accuracy and adaptable topology cause them to be used in globally minimum or maximum finding problems. Developing the GAs to increase their speed in finding the global minimum or maximum of a cost function has been a big challenge until now and many variants of GA has been evolved to accomplish this goal. This paper presents two new sequential mutation method and circular gene method to increase the speed of the GA. These methods attain a better final answer accompanied by lesser use of cost function evaluations in comparison with the original GA and some other known complementary methods. In addition, it speeds up reaching the minimum or maximum point regarding the number of generations. A number of common test functions with known minimum values and points are tested and the results are compared with some other algorithms such as original GA, bacterial evolutionary algorithm, jumping gene and PSO. Simulation results show that the presented methods in this paper can reach the global minimum point through lesser generations and evaluations of the cost function in comparison with the traditional methods.</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2009.140</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7143
ispartof 2009 Ninth International Conference on Intelligent Systems Design and Applications, 2009, p.31-36
issn 2164-7143
2164-7151
language eng
recordid cdi_ieee_primary_5362810
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
circular gene method
Cloning
Computational intelligence
Convergence
Cost function
DNA
Evolutionary computation
Genetic algorithm
Genetic algorithms
Genetic engineering
Genetic mutations
sequential mutation method
speeding up the convergence
title Speeding Up the Genetic Algorithm Convergence Using Sequential Mutation and Circular Gene Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speeding%20Up%20the%20Genetic%20Algorithm%20Convergence%20Using%20Sequential%20Mutation%20and%20Circular%20Gene%20Methods&rft.btitle=2009%20Ninth%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Nia,%20M.B.&rft.date=2009-11&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=1424447356&rft.isbn_list=9781424447350&rft_id=info:doi/10.1109/ISDA.2009.140&rft_dat=%3Cieee_6IE%3E5362810%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=076953872X&rft.eisbn_list=9780769538723&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5362810&rfr_iscdi=true