A research of calculating the shortest distance in euclidean network

In this paper, we have designed DOTP (distance of two points) algorithm and some data structure to calculate the shortest distance between the two vertices in Euclidean network. We created a function which had a linear relation with vertices n and edges e in time complexity. This algorithm's ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jun Yang, Yingxun Fu, Liu Jiang, Junde Song
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue
container_start_page 973
container_title
container_volume
creator Jun Yang
Yingxun Fu
Liu Jiang
Junde Song
description In this paper, we have designed DOTP (distance of two points) algorithm and some data structure to calculate the shortest distance between the two vertices in Euclidean network. We created a function which had a linear relation with vertices n and edges e in time complexity. This algorithm's time complexity majority related with non-tree edges t which defined in chapter 2 and has a small magnitude because this algorithm has a linear relation with t 2 .
doi_str_mv 10.1109/ICNIDC.2009.5360837
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5360837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360837</ieee_id><sourcerecordid>5360837</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3573a772bae346228a4cd8bd740200a4469dc8028f5aded30fe57d01f4317ea3</originalsourceid><addsrcrecordid>eNotkMtqwzAURAVtoEmaL8hGP2D36mFLXganD0NoN9mHG-m6VuvaxVIo_fs2JKuB4TAchrG1gFwIqB6a-rXZ1rkEqPJClWCVuWELoaXW2lYWbtlcKqMzkEbO2OLMVVAKq-_YKsYPAPivhCjsnG03fKJIOLmOjy132LtTjykM7zx1xGM3Toli4j7EhIMjHgZOJ9cHTzjwgdLPOH3es1mLfaTVNZds__S4r1-y3dtzU292WRCmSJkqjEJj5BFJ6VJKi9p5e_RGn31Q67LyzoK0bYGevIKWCuNBtFoJQ6iWbH2ZDUR0-J7CF06_h-sB6g-tK00k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A research of calculating the shortest distance in euclidean network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jun Yang ; Yingxun Fu ; Liu Jiang ; Junde Song</creator><creatorcontrib>Jun Yang ; Yingxun Fu ; Liu Jiang ; Junde Song</creatorcontrib><description>In this paper, we have designed DOTP (distance of two points) algorithm and some data structure to calculate the shortest distance between the two vertices in Euclidean network. We created a function which had a linear relation with vertices n and edges e in time complexity. This algorithm's time complexity majority related with non-tree edges t which defined in chapter 2 and has a small magnitude because this algorithm has a linear relation with t 2 .</description><identifier>ISSN: 2374-0272</identifier><identifier>ISBN: 1424448980</identifier><identifier>ISBN: 9781424448982</identifier><identifier>DOI: 10.1109/ICNIDC.2009.5360837</identifier><identifier>LCCN: 2009906184</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Computer networks ; Costs ; Data structures ; DOTP ; Encoding ; Euclidean network ; Intelligent networks ; Laboratories ; Rail transportation ; shortest distance ; Tree graphs ; XML</subject><ispartof>2009 IEEE International Conference on Network Infrastructure and Digital Content, 2009, p.973-975</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Yang</creatorcontrib><creatorcontrib>Yingxun Fu</creatorcontrib><creatorcontrib>Liu Jiang</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><title>A research of calculating the shortest distance in euclidean network</title><title>2009 IEEE International Conference on Network Infrastructure and Digital Content</title><addtitle>ICNIDC</addtitle><description>In this paper, we have designed DOTP (distance of two points) algorithm and some data structure to calculate the shortest distance between the two vertices in Euclidean network. We created a function which had a linear relation with vertices n and edges e in time complexity. This algorithm's time complexity majority related with non-tree edges t which defined in chapter 2 and has a small magnitude because this algorithm has a linear relation with t 2 .</description><subject>Algorithm design and analysis</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Data structures</subject><subject>DOTP</subject><subject>Encoding</subject><subject>Euclidean network</subject><subject>Intelligent networks</subject><subject>Laboratories</subject><subject>Rail transportation</subject><subject>shortest distance</subject><subject>Tree graphs</subject><subject>XML</subject><issn>2374-0272</issn><isbn>1424448980</isbn><isbn>9781424448982</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtqwzAURAVtoEmaL8hGP2D36mFLXganD0NoN9mHG-m6VuvaxVIo_fs2JKuB4TAchrG1gFwIqB6a-rXZ1rkEqPJClWCVuWELoaXW2lYWbtlcKqMzkEbO2OLMVVAKq-_YKsYPAPivhCjsnG03fKJIOLmOjy132LtTjykM7zx1xGM3Toli4j7EhIMjHgZOJ9cHTzjwgdLPOH3es1mLfaTVNZds__S4r1-y3dtzU292WRCmSJkqjEJj5BFJ6VJKi9p5e_RGn31Q67LyzoK0bYGevIKWCuNBtFoJQ6iWbH2ZDUR0-J7CF06_h-sB6g-tK00k</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Jun Yang</creator><creator>Yingxun Fu</creator><creator>Liu Jiang</creator><creator>Junde Song</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>A research of calculating the shortest distance in euclidean network</title><author>Jun Yang ; Yingxun Fu ; Liu Jiang ; Junde Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3573a772bae346228a4cd8bd740200a4469dc8028f5aded30fe57d01f4317ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Data structures</topic><topic>DOTP</topic><topic>Encoding</topic><topic>Euclidean network</topic><topic>Intelligent networks</topic><topic>Laboratories</topic><topic>Rail transportation</topic><topic>shortest distance</topic><topic>Tree graphs</topic><topic>XML</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun Yang</creatorcontrib><creatorcontrib>Yingxun Fu</creatorcontrib><creatorcontrib>Liu Jiang</creatorcontrib><creatorcontrib>Junde Song</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Yang</au><au>Yingxun Fu</au><au>Liu Jiang</au><au>Junde Song</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A research of calculating the shortest distance in euclidean network</atitle><btitle>2009 IEEE International Conference on Network Infrastructure and Digital Content</btitle><stitle>ICNIDC</stitle><date>2009-11</date><risdate>2009</risdate><spage>973</spage><epage>975</epage><pages>973-975</pages><issn>2374-0272</issn><isbn>1424448980</isbn><isbn>9781424448982</isbn><abstract>In this paper, we have designed DOTP (distance of two points) algorithm and some data structure to calculate the shortest distance between the two vertices in Euclidean network. We created a function which had a linear relation with vertices n and edges e in time complexity. This algorithm's time complexity majority related with non-tree edges t which defined in chapter 2 and has a small magnitude because this algorithm has a linear relation with t 2 .</abstract><pub>IEEE</pub><doi>10.1109/ICNIDC.2009.5360837</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2374-0272
ispartof 2009 IEEE International Conference on Network Infrastructure and Digital Content, 2009, p.973-975
issn 2374-0272
language eng
recordid cdi_ieee_primary_5360837
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Computer networks
Costs
Data structures
DOTP
Encoding
Euclidean network
Intelligent networks
Laboratories
Rail transportation
shortest distance
Tree graphs
XML
title A research of calculating the shortest distance in euclidean network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20research%20of%20calculating%20the%20shortest%20distance%20in%20euclidean%20network&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Network%20Infrastructure%20and%20Digital%20Content&rft.au=Jun%20Yang&rft.date=2009-11&rft.spage=973&rft.epage=975&rft.pages=973-975&rft.issn=2374-0272&rft.isbn=1424448980&rft.isbn_list=9781424448982&rft_id=info:doi/10.1109/ICNIDC.2009.5360837&rft_dat=%3Cieee_6IE%3E5360837%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360837&rfr_iscdi=true